WASC 2332 Insultion for use without Backet Motors - A Survey, Bistor Abroget

RES	TRICTED - U.K. EYES (B)
COPY NG	iec
25	

Tech. Rep. No. вај-тк. 847-1978

INSULATION FOR USE WITHIN ROCKET MOTORS - A SURVEY

N. EVANS

BRISTOL AEROJET LIMITED BANWELL, WESTON-SUPER-MARE, ENGLAND

MARCH, 1978

PREPARED FOR PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

CONTRACT NO: RME 1/11/117

BRISTOL AEROJET LIMITED, BANWELL WESTON-SUPER-MARE.

TECHNICAL REPORT NO. 847 March 1978

INSULATION FOR USE WITHIN ROCKET MOTORS - A SURVEY

Author:

N.E. Want

Approved for Issue:

Bucy South .

Contract No: RME 1/11/117

"This document is copyright (c) and is a private document issued in confidence. It must not be reproduced in any way in whole or in part nor copied by or loaned to any third party nor must the information contained therein be so reproduced copied or loaned in whole or in part otherwise than for the purpose described in any accompanying docuentation without the written consent of the Company, Bristol Aerojet Limited, Banwell, Weston-super-Mare. All rights reserved".

PAJ-TR.847-1978

.

.

CONTENTS

					Page
1.	FORE	WORD)		2
2.	REQU	IRME	NTS	FOR AN INSULANT	2
3.	SCOP	E OF	TH	E REVIEW	3
4.	THE	LITE	RAT	URE SEARCH	3
5.	THE .	AMER Gen	ICA era	N SCENE - THE U.S.A.	
	5.2	Тур	es	of Insulation that have been used	4
6.	EUROI	PEAN	PR	ACTICE	5
7.	CANA	DIAN	PR	ACTICE	6
8.	GENE	RAL	FIN	DINGS	6
9.	MAN N	MADE	FI	BRES	6
10.	CONCL	LUSI	DNS		?
APPI	ENDIX	1		SUMMARY OF THE E.S.A. DOCUMENT SEARCH	
		2	~	SOME TYPICAL AMERICAN VENTURI AND BLAST PIPES	
	19	3		A SUMMARY OF RELEVANT TECHNICAL REPORTS FROM BRISTOL AEROJET LTD.	
	It	4	*0	ADDITIONAL BRITISH DATA	
	19	5	407	CANADIAN DATA	
	18	6	a.,	SYNDPSIS OF 51 PAPERS HIGHLIGHTED BY THE ESA SEARCH	
• •	1	7	**	A SURVEY OF MAN MADE FIBRES	

INSULATION FOR USE WITHIN ROCKET MOTORS - A SURVEY

SUMMARY

A survey has been made of materials that have been considered or used as insulation for rocket motors during the past twenty years. The requirements for this type of application are discussed and illustrated mainly by reference to American practice. The results of a literature survey is presented and was made by combining relevant 'in-house' data with that from an ESA document Search by DRIC.

For convenience much of the information obtained has been summarised and is presented as seven appendices in the following way:-

Appendix 1 Summary of the ESA document search

2 Some typical American venturis and blast pipes

- 3 A summary of relevant Technical Reports from Bristol Aerojet Ltd.
- 4 Additional British data
 - Canadian data

Synopsis of 51 papers highlighted by the ESA Search

5

6

7

A survey of man made fibres

-2- .

1. FOREWORD

Although it is hoped that this survey may have general utility, if only as a reference paper, its main purpose was to provide the background data needed in a programme which sought an alternative material to ashestos fibre. The main objective in this survey was therefore to ascertain from published data what other materials, and particularly fibres, have been used or considered for use as rigid and flexible insulations in rocket motors within roughly the past twenty years so that an appraisal might be made of their potential as alternatives for asbestos should legislation, or other factors, preclude its use at some future time.

2. REQUIREMENT FOR AN INSULANT

It is well known that the metallic materials from which rocket motors are usually made have to be protected against the effect of intense heat for short periods of time if the structure is to retain its strength and geometry and so be capable of performing its mission. Polymeric materials have been used, widely, to provide this protection as they are relatively poor conductors of heat and also absorb appreciable amounts of thermal energy as they pyrolyse. Under the environment of a rocket motor firing this decomposition occurs at an extremely rapid rate and is usually accompanied by unacceptably high erosion losses. These defects can, however, be partly mitigated by loading the polymer with suitable fillers, often of a refractory nature, and by accepting that an appreciable portion of the insulation will still ablate away as the motor fires.

Apart from being subjected to temperatures which can often be as high as 3500 K, the insulation may be in direct contact with the propellant and therefore must be compatible with it and not react chemically with it under world wide environments of use and storage; in addition there is often a need for the charge and insulation to be bonded together strongly so that burning cannot occur prematurely at this interface.

Density is a further factor affecting the choice of an insulant, because of its effect on payload, but as space within the motor case may also be at a premium, compromises may have to be made between the density of a material and its efficiency as an insulation in order to achieve a minimum acceptable thickness for the insulation.

3. SCOPE OF THE REVIEW

This report sets out to summarise the data that was available on rigid and elastomeric insulation that has either been used, or has been under consideration, for use in rocket motors essentially within a period spanning 1958 to about 1976; it has been confined to insulation used as protection against the effect of elevated temperatures and although cryogenic applications are important for liquid fuelled motors, they were not considered in the survey.

4. THE LITERATURE SEARCH

Two sources of literature were used but only 'unclassified' or 'restricted' material was examined. The first covered in-house references, abstracts and documents whilst the second still more comprehensive search used the ESA Documentation Service of Defence Research Information Centre (DRIC). The author is deeply indebted to Mr. Brian Clasby of this latter centre for his assistance in providing abstract print-outs from their data base and also to Mrs. S. Dibb of Bristol Aerojet who supplied the actual articles, papers and prints from microfiches etc., used in this Survey.

Appendix 1 is a brief resume of the basis for the DRIC search.

5. THE AMERICAN SCENE - THE U.S.A.

5.1 General

As might have been expected a considerable proportion of the relevant literature examined originated from the U.S.A. and reflects the importance they have attached to defence and attack missiles and to the exploration of outer space.

These latter applications involve mission times which are far in excess of those required even for inter-continental ballistic missiles and therefore need insulation to a standard which might have relevance to a future generation of rocket motors. Some idea of the exposures encountered in space flights can be obtained from Figs.l and 2. Fig.l summarises the temperatures that occur at various stages in the single mission of the Mercury capsule and lists some of the materials that were being considered for this project in about 1960.

More recently the concept of a space shuttle has introduced a need for insulation which cannot be met easily by the ablating types of insulation which have been used successfully for years on manned space flight projects. In this new application the vehicle will have to withstand repeated entries and exits through the earth's atmosphere so, ideally, to be economic, the insulation used should have the same life as the vehicle. An alternative but less economic solution of this problem will be to use 'one off mission' insulation which can, not only, be produced cheaply, but can also be replaced easily and quickly between flights.

5.1 contd.....

Some idea of the areas on a space shuttle vehicle that need protection and the temperatures they are expected to reach may be obtained from Fig.2 which summarises North American Rockwell's design requirements for their High Range Cross Orbitor Vehicle.

5.2 Types of Insulation that have been used

The survey has confirmed impressions that a wide range of thermal insulation has been and is currently being used in rocket motors. This range covers simple insulations such as sheet cork on Minuteman (to protect its structure during launch from its silo) or the laminated wood and metal structure of the nose cone of the second stage of the Polaris A3 missile, and extends to include difficult to produce and process materials such as refractory oxycarbides of zirconium, hafnium or tantalum etc. Various types of graphites either alone or in conjunction with high melting point metals such as tungsten and molybdenum are also being widely used in American rocket motor venturis especially in the arduous areas of their throats.

The majority of these insulants were developed up to 20 years ago but as Appendix 2 will show, they are still in current use on front line defence missiles and for outer space explorations.

A range of insulants is generally used in combination and Appendix 2 is introduced to show, by means of diagrams, the construction and location of the insulation within the nozzles of 13 well known American rocket motors or missiles. Nozzle construction has been selected for this purpose because their materials of construction, and especially the insulation, are usually subjected to the maximum effects of the combustion of the propellant. Between 65% and 75% of the total vehicle thrust develops within the throat of the nozzle as the chamber products accelerate to sonic velocities, with the balance of this thrust being developed within the expansion cone of the nozzle.

Although some of the nozzles shown in Appendix 2 are no longer in production, all of them that are used on missiles were still in current deployment in 1976; they range from the simple low cost nozzle used on the Sidewinder IC missile to the more complex movable nozzles that are used for achieving thrust vector control for the first stage of the Poseidon C3 missile.

In addition to these examples, Table 1 has been produced to provide a reasonably brief summary of past and current American applications for temperature resisting materials in their rocket motors. 5.2 contd.....

For convenience, American terminology is used in this table and is based on the following definitions:-

A THERMAL LINER

Material which forms the aerodynamic contour with its surface directly exposed to the exhaust of the burning motor.

AN INSULATOR

Is a material placed behind a liner to serve as a thermal barrier to prevent the underlying structure from reaching an excessive and unacceptable temperature. Sometimes a single material can serve as liner as well as insulator and in some instances can also form the structure.

THROAT INSERT Is a special erosion resistant liner placed in the throat region of a nozzle to keep increases in its diameter by erosion losses at a minimum.

6. EUROPEAN PRACTICE

Apart from the possibility of a language barrier problem causing a low abstraction from Continental literature, the survey showed that there has been much less publication of relevant information in Europe than in America. In particular any useful detailed data on practice in the USSR was not obtained from the survey. An impression has, however, been formed that the rest of European practice resembles or even follows American techniques closely despite its general lower funding.

In Great Britain the Ministry of Defence has sponsored work at Bristol Aerojet Ltd., on a variety of insulants so a digest of related reports has been prepared to form Appendix 3 of this report. This appendix spans the years 1968 to 1977 and presents data in the following way:-

Moulding compounds for compression, transfer or displacement moulding	One component filler Combinations of fillers	Sheets 1-3 Sheets 4-5	
Other insulation topics	Edgewise tape winding Glass fibre overwinding Carbon cord/asbestos tape. Asbestos/carbon end plates.	Sheet 6	A TA AND BAILANDON AND TA AN AND AND AND AND AND AND AND AND AND
	Silicone nitride Elastomeric compounds	Sheet 5	ty Jacob - Artificial Contract Contractory of the second second second second second second second second second

Appendix 4 contains a summary of other data from U.K. sources.

-6-

7. CANADIAN PRACTICE

Some brief comments of the Canadian scene is introduced as Appendix 5, because of an early use, there, of cast in situ linings.

B. GENERAL FINDINGS

Appendix 6 contains a brief synopsis of 51 papers highlighted by the literature survey and which are thought to be of relevance to the purpose of this report. Materials that are mentioned in this Appendix, and which could be considered when planning development work on insulation, include:-

		Appe <u>Item</u>	Ref.
Rigid Composites	Carbon-carbon with additives e.g. inhibitors Borides Quartz-phenolic	14, 35, 31, 48.	50, 51. 36, 46. 32, 33.
Fibres	Alumino silicates from Carborundum Co.	47	
	Mullite fibre's in combination with Kaowool Magnesia fibres	46 46 23	
Foams	Ceramic foams	45	
Elastomerics	DC-93-104 proprietary material Dual layer insulation	43, 39	49.
Miscellaneous	Addition of ammonium salts, (e.g. sulphate, benzoate), or potassium titanate to moulding compounds and elastomers.	28	
	Pyrocarbide formation	40 s	+1.
	Deposition of films onto insulants by plasma spray.	22.	

9. MAN MADE FIBRES

A general survey based on information available about these types of materials, and which have either been applied in insulation or could be considered for this purpose, is given in the two sheets that form Appendix 7. This date is presented in the following way:-

Sheet 1 - Sheet 1 details information about alumino-silicates and 2 produced directly from naturally occurring minerals; Sheet 2 gives data about known syntheses of silicates.

Sheet 3 -

5 - Lists the other types of man made fibres that have or could be considered for use in insulation and for the sake of completeness includes the well known glass, carbon and nylon fibres.

BAJ-TR.847-1978

10. CONCLUSIONS

Although it is difficult to provide well defined conclusions from a summary of this type, several opinions have been formed; they are:-

- The predominance of literature found was of American origin and although funding of work on rocket propulsion has been greater than elsewhere, it would appear also that their work has received wider publication than comparable UK and European research.
- 2. There seems to have been a considerable reduction in the rate of progress in the USA since about 1968 and many of the insulants used in the motors of currently deployed missiles were developed much earlier.
- Although many materials which have been developed in the USA have also received attention in the UK, practical evaluation here, by actual or closely simulated rocket motor firings, has lagged behind USA practice.
- 4. Some of the American development has been with relatively sophisticated materials but UK references to any work with such materials were not found.
- There are a few refractory fibres, e.g. mullites and various other aluminas which do not appear to have been examined in the UK for rocket motor applications.
- 6. Carbon/carbon composites have been reported to be promising insulants especially for space shuttle applications and are being developed in America for this use because existing ablative insulation is thought to be inadequate for such applications.

RESTRICTED - U.K. EYES (B)

-7-

BAJ-TR.847-1978

RESTRICTED

1

U.K.

EYES (B)

		TABLE 1 Sheet 1
Phenolic resin combined with reinforcing materials such as carbon, graphite, silica, asbestos, or glass has been used extensively with success and can be recarded as the	Graphite/phenol and Carbon/phenolic	ic Both materials are used regularly as flame barriers for lining blast tubes, throat approaches and throat extensions, i.e. immediately upstream and downstream of the throat, and are used almost exclusively in these locations when the throat diameter exceeds about 250 mm.
standard lining for most nozzles. Epoxide resins are less widely used although		Graphite cloth/phenolic is preferred whenever erosion will be severe and whenever thermal stability is important and has been used almost exclusively on the very large motors of recent time.
there are several examples of overwrapping with prepregs of these resins and can sometimes be attractive because that do not		The lower cost and lower thermal conductivity of carbon cloth can make it attractive becaose thinner sections can be used and back-up insulation may not be perded
involve high pressure in their curing proceedures. Epoxy novolac resins have been used for this reason.		Either type of material has especial application if condensation and deposition from exhaust products on to the thermal surfaces of the nozzle ('slagging') can occur shortly after ignition when these surfaces are still cool (such deposition can change the aerodynamic contours, alter the heat transfer into the lining and may introduce an irregular thrust trace; it can also lead to an unsatisfactory function of movable nozzles.
	и С	Stacked layers and rosette lay-ups are widely used with a stacked layer often being built up in conical form from individual patterns cut from prepregged broad goods, as angles greater than 15 ⁵ to the axis can be obtained easily in this way. Rosette or petal lay-ups, also with precut patterns, allow edge orientations to be presented to the gas flow so that a portion of each individual petal may remain unaffected by the firing.
	ແ Silica/phenolic ເຊັ່	Often used when the expansion ratio is between 2 and 4 because it is cheaper than either graphite or carbon cloth; it has even been used as a throat lining for short burning time motors (<10s) which do not develop pressures much above 100 lb in ⁻² and which use either a low flame temperature propellant (<2700 [°] C), or a highly oxidising one.
	≤	Silica/phenolic material is sometimes also used to insulate the vulnerable areas of a steel motor case and quarter circumferential mouldings are bonded into forward and aft closures and/or to wing rings for this purpose.
	Aabestos/phenoli Glass/phenolic ⊥ ⊢	c The main application is as 'back-up' insulation behind highly thermal conductive liners such as pyrolytic or polycrystalline graphite. There are some examples of asbestos/phenolic being used as the throat lining of nozzles on short burn time, low flame temperature motors where its low cost is attractive.
•	а - с -	Glass/phenolic is widely used on large nozzles as 'gore strips'. In this weight saving application triangular shaped cut outs the length of the cone, are laid flat along the exterior of the liner/insulation combination and are then overwound with a glass roving or tape at each end.
		There are also a number of examples, but mainly in outer space activities, where glass/ phenolic material has been used as the main structure (of HS 303 A satellite motor of Sheet 28 of Appendix 2.)
•		Both materials, together with silica/phenolic, have widespread application as the only insulation of areas of low erosion, such as the aft portions of exit cones. Their low cost and relatively low density has also made them attractive for use as materials of construction for the exit cones of massive rocket motors such as a NASA solid propellant alternative for their Saturn project.
	Carbon/phenolic Graphite/phenolic Silica/phenolic Asbestos/phenolic Glass/phenolic	All these materials are used either independently or in combination as a more economic way of using fabric especially for nozzles having a diameter greater than 16 inches. Composite liners are produced by overwrapping debulked inner linings with a tape insulation and then curing the two materials in one operation.
		so that outling is at an angle to this pattern.
		produce basic structure when a light weight construction is essential but glass/phenolic tapes seem to have been exploited more in this way than the others, possibly because of their low cost and earlier availability.

TABLE 1 (cont'	d)	y		TABLE 1 Sheet 2
GRAPHITES	BULK OR MONOLITHIC FORMS	Polycrystalline graphite	General application is for nozzles of $\!\!\!<\!6$ inch throat diameter and is attractive 2500°C the strength increases with temperature rise. Components are produced moulding or extrusion.	/e because up to ecout either by compression
on an integ	, ,		Main application is where a low cost material with high resistance to erosion approaches, throat extensions and blast pipes. Often used in the throat itsel combination with a high melting point metal, e.g. tungsten or molybdenum - ins there are, however, several small motors where it is the only insulation and f (of Sparrow nozzle - sheet 18 Appendix 2). The main problem experienced is its relatively brittle nature which can lead t especially during the initial firing stages; but this problem can sometimes to	is needed as in throat if dut then usually in sert in the nottest areas; "orms the throat. To spiral crack procegation to overcome by segmenting
			the liner in the areas of incipient crecking or by using it in ring or washer	form
		Pyrolytic graphite Pyrolytic graphite/ infused with silicon carbide.	Used whenever the erosion resistance and/or the strength of polycrystalline gr Frequently used as a stack of washers with the thickness of an individual wash but with a tight thickness tolerance being specified only for the assembled ar Main drawback is the material's high thermal diffusitivity which usually resul backing insulation.	raphite is inadecuate. Mer not exceeding ½ inch nd compressed stack. .ts in a need for
	PYROLYSED REINFORDED PLASTICS	Carbon/carbon composites. (the reinforcement can be a fabric, fibres or a falt of either carbon or graphite)	 Becoming more widely used because of its high efficiency and light weight. Rehave included the nozzles of SRAM (Lockheed Propulsion solid fuelled motor for to ground missile) and Trident 1, C4 missile where it is being used as stacked. This use of rings is common and they have been used fore and eft of pyrolytic throat. Materials of density around 1400 kg m⁻³ have been used mainly to date, because densities of 2000 kg m⁻³ are now available and have better resistance to erosi it is now often preferred to plycryatalline graphite and is rapidly replacing graphite/phenolic lining in nozzles which have throat diameters>8 incn despit There seems to be two main manufacturing techniques:- (i) Chemical vapour deposition of pyrolytic carbon, from vapour, into th (ii) Impregnation of the reinforcement with liquid resin and/or pitch, for carbonisation. This process is repeated several times until the requestive schewed. The material is then pyrolsed finally a 2482 (4500 - 5000^{OF}) to graphitise the matrix carbon partially. 	cent project applications a short range attack air rings. washers which form the of availability but on. In this density carbon/phenolic and e its much nigher cost. e reinforcement. llowed by uired - 2750°C
	e s	×	Centres of expertise in these techniques exist at Sandia Laboratory, Alberquer Supertemp Co., Santa Fe Springs, Calif, Lockheed Aerospace and many others. A resin(s)/impregnants have been described and there are several techniques for	que, N. Mexico, wide range of metrix applying them.

TABLE 1 (Cont'd)

TABLE 1 Sheet 2

RESTRICTED - U.K. EYES (B)

843-TR.847-1978

RESTRICTED - U.K. EVES (B)

2

BAJ-TR.847-1978

TABLE 1 (cont'd)

RESTRICTED -

U.K. EYES (B)

	T	· · · · · · · · · · · · · · · · · · ·
ELASTOMERS	Sheet or Mouldings	Although there has been past usage of elastomers as linings in nozzles, they have been confined to regions of low mach number (0.2) where erosion is not a serious problem. Typical example have been the larger end of convergent-divergent nozzle inlets or on the chamber side of submerged nozzles; they have also been used to provide flexible sealing on moveble nozzles.
		The major application has been for heat and pressure cured materials produced by compression or autoclave techniques, and containing either chopped fibres or powders of carbon, silica or glass, used either alone or in combination.
		Butadiene acrylonitrile formulations were widely used as cast lining and several types of silicones have also been used where higher temperature resistance has been required.
		'O' rings are widely used between components to prevent gas flow and also to prevent non bonded areas from becoming pressurised.
		Low temperature exposure, such as on outerspace vehicles, has often inhibited the use or restricted the choice of compound.
	. Castables	It is known that at least two project motors have their internal insulation applied by a casting/spinning technique in which the cases are spun at relatively slow speeds in a vertical position to deposit a liquid rubber preparation on to the closure areas; different speeds, (three are common) are used to contour the thickness spread and with some degree of cure being applied between each costing. The insulation on the parallel portion of the motor is then applied by spinning the motor in a horizontal postion (somewhat similar techniqueshave also been developed by DREV at Valcartier in Canada).
REFRACTORY MATERIALS	Metals	Molybdenum and tungsten and its alloys are widely used as throat inserts to achieve the minimum possible erosion losses in this critical area. Tungsten or its alloys in forged extruded or in pressed and sintered forms are used more widely in this way than molybdenum; forgings and extrusions are, however, preferred, despite their higher cost, for higher flame temperatures but silver and copper infiltered tungsten are preferred when still higher temperatures of 3316 - 3593°C (5000 - 6500°F) have to be resisted.
		The current limitation of application seems to be at a 7.5 inch throat diameter. Throat linings produced either as forms or as surface coatings by flame spraying these metals, have been used, although not widely.
		It seems to be general practice to coat the faces of tungsten inserts which may be in contact with carbonaceous materials to prevent the formation of eutectics so thin films of tentalum metal or thoria are commonly applied.
	Ceramics	Generally considered in the past to be too brittle for most missile applications but the main insulation of the Bullpup missile case was of this type. There have been frequent literature reference to investigations of ceramics, simple as well as complex, for use in missiles as insulation, often as linings for nozzle throats.
		Ceramics and foamed ceramics are being used in current designs of space shuttle vehicles as one solution of the problem of providing insulation which can withstand repeated re-entry conditions. (Fig.2 of this report shows the temperature pattern of such a vehicle).
		END

TABLE 1 Sheet 3

TASLE 1 Sheet 3

RESTRICTED-U.K.EYES (B)

EXIT, 704 ORBIT, 93 TO-32 EXIT, 371 REENTRY, 452 OR BIT,66 TO-56 REENTRY, 538 REPRESENTATIVE TEMPERATURES EXIT, 66 1650 FOR MERCURY SPACE FLIGHT ORBIT, 38 TO -18 SHOCK WAVE CONDITIONS. REENTRY, 343. OF REENTRY, 4150 AT MAX.q CABIN AIR Figures are estimated °C EXIT, 29 ORBIT, 41 TO 32 SUIT AIR **RECOVERY, 39** EXIT, 18 (This figure appeared originally in a ORB IT, 18 TO 24 paper by S. Speil. Johns-Manville RECOVERY, 29. Research & Engineering Center, Manville. N. J.) SHOCK WAVE ABLATIVE GASEOUS Ablating plastic composite PRODUCTS. during the re-entry heating. (Glass-fibre-reinforced phenolic POROUS CHAR LAYER. resin served as the ablating VOLATILE LOSS LAYER. model) INTACT SOLID BODY. STATES CONSTRUCTION OF MOLTEN LAYER BOUNDARY LAYER

(All these figures appeared originally in a paper by D.L.Scmidt. Modern Plastics. Nov. 1960.)

FIG.I

2000 40 00051 Ic-graphi SDID-Graphit IOU2 Phenolic silico Substrate 500 0 0 12 24 36 48 60 Exposure time sec.

54 1009.

Substrate temperatures in various ablating materials. Test facility: Electric air arc; Initial flux: 400 B.t.u./ft² sec ; Thermocouple : 0.25 in. from original stagnation point. GRAPHITE A HENOLIC. YLON HENOLIC HENOLIC E PHENOLIC GLASS. PHENOLIC ASBESTOS C D NYLON ZI RCONIUM SILICATE STAINLESS

ABLATING MATERIALS THAT WERE BEING CONSIDERED IN 1960 FOR MERCURY SPACE FLIGHT MISSIONS.

EYES B FIG. 1

0.02 0.04 0.06 Stagnation point linear ablative rate, in/sec.

Linear ablation of various materials in high temperature air(15). Test facility: I megawatt electric arc; Gas composition: air; Gas enthalpy:~8000 B.t.u./1b; Gas temperature~15-1000°F (-9-538°C); Gas velocity: 2500 ft/sec; Initial heat flux : 1950 B.t.u./ft2 sec; Exposure duration: 3 O seconds. RESTRICTED-

SPACE FLIGHT CONDITIONS

STEEL

RESTRICTED-U.K.EYES (B) This figure appeared originally in SAE Preprint No. 700771 "Development of non metallic external insulation thermal protection systems for space shuttles." UPPER SURFACES 538 ° C 399°C

1204°C

482°C

FLIGH	T CONDITIONS	REQUIREMENTS	CANDIDATE MATERIALS
	ABOVE 1093°C { 2000°F }	High temperature properties.	Reinforced pyrolysed plastics eg:carbon/graphite composites.
	BELOW 1093°C	High temperature properties. Minimum weight Resistance to oxidation Cost. Satisfactory margin of reserve performance.	Any re-usable external insulation which will withstand temperatures up to about 1000°C.

SHOWING WHERE THERMAL PROTECTION SYSTEMS WILL

BE NEEDED ON THE NORTH AMERICAN - ROCKWELL HIGH

54 10100

RESTRICTED-U.K. EYES (B)

FIG.2

RESTRICTED-UK. EYES (B)

APPENDIX I

APPENDIX I

SUMMARY OF ESA DOCUMENTATION SERVICE SEARCHES

Three searches were made with each, in turn, becoming more selective.

Search No.1

In this initial broad search a wide range of descriptors was used, which in the event were insufficiently discriminating. For example the word 'insulation' recalled data concerned with refrigeration as well as too wide an application of insulation against heat despite its modification by 'rocket motor'.

The search programme provided by ESA is attached as Table 1.

Despite these limitations, useful abstracts were found amongst the 105 printed out, they include examples such as

- (i) Role of silica and quartz phenolics in ramjet engines
- (ii) Fundamental studies on the nature and properties of ceramic fibres
- (iii) Flexible thermal insulation for use in heat shields
- Metallic ceramic composite insulating coatings on cooled hydrogen-oxygen rockets
- (v) Mineral filled fibrous composites. New family of refractory products
- (vi) Many other, some of which are already known and available at Banwell.

Search No.2

More selective descriptors were used in this next search to give 54 further abstracts. The search programme which is attached as Table 2, gave further useful data.

Search No.3

For this further and final search carried out the sets employed were reduced selectively to 22 as shown in the ESA programme that appears as Table 3 to this appendix. By this means a further 134 abstracts were obtained.

The total number of abstracts produced for scanning by these three surveys was therefore 293. (Defence controlled literature was not included in any of these surveys).

Complete articles, or microfiches where available, were then obtained on the basis of these abstracts and many of them have been summarised as Appendix 7 of this report. .

•

APPENDIX 1

TABLE 1.

FIRST E.S.A. SEARCH

.19

	0	
×	SEARCH HI	TSTORY
Items		Description
$\begin{array}{c} 0\\ 1278\\ 450\\ 8134\\ 2\\ 21903\\ 17355\\ 2356\\ 9830\\ 1302\\ 43\\ 2226\\ 2\\ 46\\ 2241\\ 43\\ 334\\ 5392\\ 828\\ 4\\ 1254\\ 48\\ 1178\\ 8\\ 13753\\ 46\\ 101\\ 1153\\ 20502\\ 9449\\ 121\\ 11331\\ 79\\ 55\\ 226\\ 213\\ \end{array}$		BCC FILE 2 77-337 NONMETALLIC E6-E8, E10-E14 NONMETAL E6-E16 FTLL (2+3)*4 THERMAL (80) E8, E13 THERMAL E2-E10 INSULATION 9* (6+7+8) 10 * 4 ASBESTOS ASBESTOS E6, E7 CROCIDOLITE 12+13+14 11 - 15 MATRICES MATRIX MATRIXES (2+3) * (17+18+19) 10 - 15 21 * (2+3+4+17+18+19) E6-E9 ROCKET 23 * 21 SILICA 21 * 25 22+24+26 21 - 27 GLASS GLASS (83) 21 * (29+30) E6, E9 CERAMIC 21 * 32 16+24+99 26+31+33 35 - 34.

Key:

exclude + or *

as well as

APPENDIX 1

TABLE 2

SECOND E.S.A. SEARCH SEARCH HISTORY

		,
Set	Items	Description
1	0	BCC HTLE 1 77 227
2	355	
3	37	ABLATING MAISALAL
Δ	1678	ARLANTON
5	719	A RIA TT VE MATERIAT G
6	137	ABLATTUR MATERIALD
7	850	HEAD GUTEIDING
Ś	201	REENDRY SHIFT DING
9	1098	REENTRY VEHTCLES
10	58	ROCKET NOSE CONES
11	1241	SHIELDING
12	78	NOZZLE INSERUS
13	121	PYROLYTTC MADERIALS
14	1301	REFRACTORY MATERIALS
15	326	THERMAL CONTROL CONTINGS
16	1149	THERMAL PROTECTION
17	631	RTGTD
18	2150	E6 - E8 INSULAPTON
19	1523	THERMAL INSULATION
20	215	ASBESTOS
21	5056	COMPOST TE MATERTALS
22	267 .	LININGS
23	2434	PROTECTION
24	15	NOZZLE INSERT
25	34	NOZZIE WALL
26	119	NOZZLE WALLS
27	2928	E6, E18 NOZZLE
28	76	E6, E7 END PLATE
29	23	LINING
30	51	ROCKET LININGS
31	110 .	CASING
32	61	INSERTS
33	51	SHEATHS
34	227	E5, E6 NONMETALLIC
35	7436	E7, E10, E11 HIGH T
36	551	HIGH TEMPERATURE MATERIAL
37	2445	2+3+4+5+6
38	3276	7+8+9+10+11
39	1956	37 - 38
40	2	17 * 19
41	2.	17 * 18
42	57	19 * (35+36)
43	4994	11+12+22+24+25+26+27+28+29+30+31
44	32	43 * 19
45	6	44 * 42
46	44	39 * 19

Key

- Exclude + or

.

* as well as.

.

•

APPENDIX 1

TABLE 3

THIRD E.S.A. SEARCH SEARCH HISTORY

Items

Set

Description

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 676 208 208 150 23 436 1472 168 2 1847 7 231 666 1145 647 12 1847	BCC FILE 6 77-337 THERMAL INSULATION ASBESTOS ASBESTOS HEAT SHIELDING REENTRY SHIELDING RIGID HIGH TEMPERATURE ROCKET NOZZLES DUAL THRUST NOZZLES R_3-R_{15} ROCKET NOZZLES 2 * 7 4+6 2 - 13 REENTRY 14 - 15 16*8 9+10+11
16	647	14 - 15
17	12 1847	 16*8
19	9	16*18
20	506	E6-E10 ABLATION
21	33	18*20
22	54	17+19+21

Key

- exclude + or * as well as

RESTRICTED-U.K. EYES (B)

APPENDIX 2

RESTRICTED - U.K. EYES (B)

SOME TYPICAL AMERICAN VENTURIS AND BLAST PIPES

FOREWORD

The information contained in this appendix was abstracted from a NASA document on design criteria for solid rocket nozzles - NASA SP 8115 published in June, 1975.

Each of the three sheets of diagrams that form this Appendix has a separate sub-sheet outlining the main features of each venturi and the way it is insulated.

The following considerations apply throughout these sheets.

Polycrystalline graphite - are fine grade bulk or monolithic graphites produced either by compression moulding or extrusion.

Carbon, silica, esbestos - After consolidation by rolling, tapes are or glass phenolic tapes usually moulded in a hydroclave typically at 1000 lb.in⁻² for about 2 hours at 154°C (310°F). These tapes may be either straight tapes or can be bias cut when the plying at a high angle to the centre line, whilst remaining planar, is needed.

Graphite phenolic washers - are produced from pyrolsed graphite.

Mouldings of

graphite-phenolic -	are all die moulded parts, made typically under
silica - phenolic	a 2000 lb.in ⁻² pressure; they may be produced
	from moulding flocks but the original reference
aspestos-phenolic	did not give this information.

Two basic nozzle configurations are shown. The first is the classical convergent-divergent de Laval nozzle fitted externally to the combustion chamber but in the second, part or all of the exit is cantilevered into the combustion chamber either to reduce the overall length of the motor or, to use space more effectively in volume limited systems. A submerged nozzle is generally more complex in construction because much of its external surface is also subjected to the hot gases.

Apart from this difference in location the exit configuration can be either a simple truncated cone or may be contoured to turn the exhaust flow so that the gases exhaust in a more axial direction than would occur with the conical arrangement. Contoured exits, therefore, give the lower divergence losses but as might be expected usually result in an increased erosion of the liner forward of the exit plate.

Some details are given on sheet 4 about the missiles, their purpose and size on which the nozzles shown in Sheets 1 and 3 are used. This data has been abstracted from Janes Weapon Systems 1977 Pub. Janes Year Books, London.

BAJ_TR.847-1978

RESTRICTED

1

U.K.

EYES (B)

contd..... from sheet 5

Construction	Report Reference		Synopsis										
EDGEWISE TAPE	BAJ-TR.527-1970	This report summar appropriate applic where the componen Amongst the advant both design and th	This report summarises developments on this topic at Banwell; it concludes that on value analysis the most appropriate application is for producing components only when the performance achieved is advantageous or where the components produced would require large capacity presses and the use of expensive tooling. Amongst the advantages cited is its suitability for 'one-off' or prototype productions, and emphasises that both design and the manufacturing parameters are of the utmost importance for achieving a successful job.										
OVERWINDING BLASTPIPES AND NOZZLES WITH CLASS FIRE	8AJ-TR.571-1971	Reviewed the glass that a pnenolic im years. Twenty two	overwinding pregnating re instances of	of nozzles and bla sin should replace ? overwinding were :	st pipes and sug the epoxide sys cited and includ	ggested that th stem which had ded the followi	ere was consider: been in use for ; ng projects.	able evidence roughly ten					
GEASS HERE		Expansion Cone	Tail pipe	Tail pipe/ expansion cone	Venturis	Swivelling nozzles	Blast pipe	Submerged nozzles					
		Blackcap Contraves motor Cuckoo II Kestrel Pheasant Phoenix	Falcon Magpie	Linnet Siskin LWT	Kestrel HWT Wagtail	Linnet	Phoenix Ledybird Several test motors	⊎axwing					
		Rook. Stonechat											
CARBON CORD/ ASBESTOS TAPE COMBINATIONS	BAJ-TR.709-1974	Small bore blast pipes were produced experimentally. These components were made by wrapping a custom made cord produced from Type III continuous carbon fibre roving around a steel mandrel consolidating and curing it before overwrapping it with several layers of preimpregnated Fortex asbestos tape. The whole assembly was then recured to give the final component ready for machining to length etc.											
ASBESTOS/CARBON FIBRE COMBINATIONS	BAJ-TR.630-1972	Development of a h materials consider continuous carbon The initial design demonstrated that best possible mann and plate	Development of a high performance non metallic, light weight rocket nozzle is described. The carbon fibre materials considered included aligned short staple carbon fibre felts produced by PERME at Waltham Abbey and continuous carbon fibre filament tows. The initial design based on the Lapwing nozzle assembly indicated a possible 30% weight saving; its production demonstrated that a careful orientation of the fibres, so that they were subjected to the applied stresses in the best possible manner, could lead to a component which was capable of fulfilling the structural requirements of this										

End of Appendix 3.

APPENDIX 3 Sheet 6

BAJ-TR.847-1978

APPENDIX 2

THE MAIN FEATURES OF THE NOZZLE DESIGNS ON SHEET 28 ARE

ALL ARE SUBMERGED NOZZLES

601-1 ORBITAL BOOST

APOGEE MOTOR HS 303A SATELLITE and a carbon/phenolic tape elsewhere as the insulation.

A simple small diameter nozzle utilising polycrystalline graphite in the throat area

Metal weight has been kept low and has been reduced to a minimum by the use of aluminium alloys. The throat is a carbon/phenolic moulding with an insert of tungsten in its critical area to reduce erosion to almost zero.

The exit is contoured instead of having the usual truncated cone form and is insulated by a glass cloth/epoxide lining.

Has thrust vector control by liquid injection into this exit cone. The main insulation is a silica/ phenolic moulding with an insert of polycrystalling graphite in the throat area.

Is a further lightweight design for a long burning motor having a throat insulation made up of a carbon fabric/phenolic resin rosette lay-up containing a polycrystalline graphite insert. The main structure is a glass/phenolic resin lemination around a carbon phenolic moulding reinforced locally by a glass epoxide filament winding; parts of it are also wound externally with an asbestos/phenolic tape.

In 1965 this was one of the largest diameter nozzles that had been built and tested. This nozzle is a complex lay-up of phenolic impregnated tapes produces from carbon, silica or glass with the carbon tape being used as the primary insulant. A silica/asbestos fibre filled NBR rubber is also used at the head end region of the motor.

RESTRICTED - U.K. EYES (8)

ASRDC EXTENDED RANGE

SURVEYOR 'MAIN RETRO ROCKET'

260 SL 3 DEVELOPMENT MOTOR

HAJ-TR.847-1978

RESTRICTED - U.K. EYES (8) -1A-

APPENDIX 2

MAIN FEATURES OF THE NOZZLE DESIGNS ON SHEET 18 ARE

SPARROW MK 38 Mod.1

Possibly the simplest design in use in which the polycrystalline graphite is retained within a steel shell which itself forms part of the rocket motor case.

SIDEWINDER 1G

Is a simple submerged nozzle which uses polycrystalline graphite as the insulation for the more arduous areas and a resinated asbestos moulding in the final exit areas.

PHOENIX MODEL 60 Mod.0

Although this is a relatively small nozzle it is complex and comprises a blast pipe which is integral with the nozzle. Polycrystalline graphite is used in bulk and also as washers, and phenolic resin impregnated tapes of both carbon and silica are also used.

The blast pipe lining is produced from a carbon/ phenolic moulding material.

CONDOR

The nozzle and bent blast pipe are integral. Polycrystalline graphite is the main insulation but has to be replaced by pyrolytic graphite, in the form of washers in the throat to reduce the erosion that would otherwise occur in this critical area. Both types of graphite are backed by a resinated asbestos layer between them and the shell.

The exit cone insulation is moulded from a silica/ phenolic compound.

RESTRICTED-U.K. EYES (B)

APPENDIX 4

• *

943-TR.847-1978

-

APPENDIX 4 Sheet 1

RESTRICTED -

⊔.к.

EYES

(8)

		7					3
	Reference				Synopsis	C.	
1955	RPE Report 66/6 (R. Lister)	Comparison of thermal insulation for solid propellant rocket motors	A number of insulants were the end burning 203 mm SC t	evaluated as i est motor at i	linings for blast p Vestcott.	pipes and end plates b	y static firing in
			All the carbon wool/phenoli had better resistance to er if it was used as an edgewi usual to the gas stream. T flock and the other from di	c, carbon wool osion then res se tape so the wo silica/pher cings of a pre	l/graphite/phenolic sinated asbestos bu ot its fibres tende nolic materials wer epregged fabric.	c and silica/phenolic ut the latter's resist ed to be orientated mo re examined, one being	moulcings tested ance was improved re normally than moulced from
			Components wound from carbo asbestos string.	n or silica si	trings were superio	or in the firings to t	hose made from
			•				
1957	SRS Report 57/19 (M. J. Chase)	Visit to Allegeny Sallistics Laboratory during USA tour.	Asbestos/phenolic materials not necessary.	were consider	red to be reliable	insulation so further	development was
			Rubbers containing 30 pphr firing, the asbestos acted from the pyrolysis of this	of asbestos we as a cracking insulant.	ere in use as case catalyst to ensure	linings and it was be the production of lor	lieved that, in a ng chain products
			Silica, nickel powder and n pyrolysis.	ickel acetate	were also thought	to have a similar effo	ect during this
1967	RPE Tech. Memo 446 (A. C. Parmee)	Material Developments for . rocket nozzlee.	High energy aluminised prop tungsten and refractory car purpose also, and had marke forms of graphites; it was Pyrolytic graphite compared	ellants were 1 bides were att dly improved r satisfactory favourably wi	imiting the choice ractive. Pyrolyti esistance to erosi for free standing th Tungsten.	e of materials for noz: Cographite was excelle con (up to 20 fold bet shells as well as stat	tles but graphites, ant for this ter) over other cked disc designs.
1972	Manchester University MSc Thesis (). Kershaw)	Ablation Studies of Composite Materials	Oxy acetylene torch tests w tubular specimens with a $\frac{1}{2}$ carried out with a neutral	ere made using inch thick wal l:l gas mixtur	a rig designed an 1, 9 inches long, 2. Some test resu	Id made by the author f $l\frac{1}{2}$ inch c/d. All test fits obtained were:-	for examining ting was
		•					
				% wt loss	Char Yield TG 900°C	Fibre content % ut	5.G. kom -3
			Silica/phenolic	18.8	77.6	58.0	1670
			Kaowool/phenolic	19.5	83.4	68.4	1840
			E-glass/phenolic	19.7	80.4	66.8	1840
	•		Asbestos/CS.203 phenolic	23.7	73.4	63.2	1800
			Asbestos/Xylok 210	23.7	70.5	60.1 .	1710
			Durestos RA.51	26.0	71.0	63.0	1740
						· .	
1970	Proc.Roy.Soc. A.319 32-44 (RJE Glenny)	Fibrous Reinforced Metallic Matrics	Fibrous reinforced metals an 8000C continuously.	nd alloys were	examined against	a possible use in turc	ines at about

5

SAJ_T	R.847-1978 from sheet 1	• • • • • • • •						APPEND Sheet
	Reference				Synop	sis		
1976	RPE L.Div. Paper LDP 47/76 (F. E. Nicoll)	Combustion Chamber linings for e packaged liquid propellant test angine.	Describ or a co mix wes	es an examination of c mbination of them with promising for this app	namber linings mon a phenolic resin plication. The ma	ulded at Banwell . It was conclud sterials examined	from glass fibres o ed that the 50:50 g were:-	r silica fibre lass fibre/res
				118 Glass fibre chocpings	F7S Refrasil	Phenoli	c resin	Xylok 210
				50		50		
					60	40		· ·
					60		40	
					60 .	1.	40	40
				30	30	40 -		40
	(M. J. Chese)	rocket motors. Requirements, Current proctice and future trends.	report. propell bonding chemica plastic Graphit motora.	Distinction was made ant because in areas of properties of the insu 1 compatibility. Insui 8 are preferred to the main also satisfactory	as to whether the the first type is lation to be similation of other so elastomeric mater alternative to re	e insulation is i there was a need lar to the prope reas is usually p rials needed in t tinforced plastic	n physical contact for the strength, e lient as well as a rone to severe eros he first category a s especailly for sh	or not with the xpension and requirement fo ion so reinfor pplication. ort burn time
			In the correla	instance of elastomeric tion with the performan	insulation the a nce of the insulat	ctivation energy ion and the foll	of the polymer use owing figures were	d has shown so quoted:-
				Experiment	al activation ene	rgy of decomposi	tion Kcals/mole	
				00 80	01-00	55-60 45	31-35	26-30
			Fluo	rocarbon E.P.T. Pol	yetherurethane S	ilicone Neop	rene Nitrile	Natural
					Hvoalon E	SBR SBR	Polyisoprene	rolyurethane
			L		·····			
			Useful	insulation by elastomer	ic polymers is or	ly obtained by u	se of suitable fill	ers and three
÷			possibl	e types that can be use	d, usually in com	bination, were c	ited; thus:-	
	стан, 1. Стан		D	ecomposing Below eoradiation temperature	Decomposi	ng Above	Non Decomposin	g
				aric acid	uegrauati	on remperature		-
		and the Martha and	P	otassium oxalate	Macrossier	bydroxide	Finely divided	
			A	ntimony triaxide	Lead chlo	ride	BIILEB	
			L	-			I]
	•		Reinfor	ced plastic insulation	usually involves	a high fibre con	tent and a paradov	exists because
			althoug	h they may be orientate	d either for maxi	mum resistance t	erosion or for ma	ximum strength
1.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		an orie	ntation normal to the g	as flow, to reduc	e erosion to a m	inimum, then result:	s in thermal
			conduct	ivity through the insul	ation wall being	at its maximum r	ate.	
			Asbesto	s is probably the most	widely used fibre	because of its	low cost, low condu	ctivity and its
4.4		and the second sec	adility	to absorb energy by lo	as of closely bon	ded water molecu	les at about 700°C	out silica, lo
1			higher	resistance to erasion i	a pagential. The	fallowing figure	from static motor	VILY whenever
			illustr	ated these characterist	ics:-	. Strowing right	CO TOM BEDEIC MOTO	
	· · · · · · · · · · · · · · · · · · ·					Asbestos	Gilica Graph	ite
				Attack rate	μm s-1	140	203 290	
				Erosion rate	μm s ⁻¹	51	-33 nil	
						. (swollen)	
			Phenoli	c resins are the more w	idely used matric	es in these rein	forced plastics, bec	cause of their
			aromati	c structure and composi	tes made with the	m have strain va	lues of 0.2-0.4% at	break unless
			the use	of matched metal mould	americ or thermop	lastic polymers.	rabrication method	is mainly invol
			lenoth	to diameter ratio compo	nents can be pred	uced separately	r uisplacement tech	iques and high
			Compone	nts or around throat in	serts. The revis	w cave a short a	count of practice 4	n the lish in
				411				
			it is p	ointed out that the lar	ge componenta bei	ng produced there	have to be fabrica	ted by string
•			it is pand/or	cinted out that the lar tape winding or hand la	ge components bei y-up methods beca	ng produced there use matched die t	e have to be fabrice tools not only becom	ated by string me gigantic in
•			it is p and/or and cos	ointed out that the lar tape winding or hand la t but few presses exist	ge components bei y-up methods beca in the world whi	ng produced there use matched die t ch are large enou	e have to be fabrica tools not only becom ugh and sufficiently	ated by string me gigantic in y robust, to ha
			it is p and/or and cos them.	ointed out that the lar tape winding or hand la t but few presses exist The attached figure was	ge components bei y-up methods beca in the world whi used to show how	ng produced ther use matched die ch are large enou composite/compos	have to be fabrica tools not only becom ugh and sufficiently site techniques are	ated by string me gigantic in y robust, to he used in rocket

END OF APPENDIX 4

RESTRICTED

I.

U.K.

EYES

(8)

RESTRICTED-U.K. EYES (B)

TYPICAL ROCKET MOTOR NOZZLE SHOWING USE OF COMPOSITE - COMPOSITE ASSEMBLIES.

SPECIFIC EXAMPLES OF THIS TYPE OF ASSEMBLY ARE GIVEN IN APPENDIX 2 OF THIS REPORT.

RESTRICTED-U.K. EYES (B)

APPENDIX 5

843-TR.847-1978

	Flame temperature up to 2750 K and burning times up to 15 s.	Gristol Aerospace Winnipeg use either Speer 890S or Union Carbide ATJ graphites for lining the steel structure in the throat area. The steel expansion cone is coated internally with sprayed alumina applied by the Rockide process.
NOZZLES	⊎hen flame temperatures may be up to 3300 K.	The graphite lining has a secondary insulation formed by a silica/phenolic moulding produced from diced squares of fabric prepreg. Unsupported silica/phenolic composite has been used successfully as the expansion cone at these temperatures for nozzles with dimensions of about 430 mm length and 300 mm diameter.
		At Defence Research Establishment Valcartier (DAEV) the standard nozzle for their CRV 7 motor has a nozzle moulded from chopped glass/phenolic (Fiberite 16771) but with a Speer 8905 graphite throat insert. The motor has a typical firing time of 2.5 s and uses a highly aluminised propellant; its length is 34 inches and it has a 4 inch diamater.
		DREV have been considering the replacement of this nozzle by an asbestos phenolic flock such as Durez 23639 and have also examined a wet graded asbestos moulding material produced by Bristol Aerojet Ltd.
	In 1962 DREV report CARDE TM 676/2 gave a desc inner parallel portions of rocket engines. An additional thickness of 0.020 inch applied over material to which the propellant will bond cher	ription of their universal spinning machine for applying even layers of restrictor to the overall 0.050 to 0.080 thickness was applied in this way to Bleck Brent III with an r a three foot length at its nozzle end (this restrictor is an insulating layer of inert mically).
CASE LININGS	The restrictor was a polyurethane containing 32 azelate and crosslinked with 2-4-6 tolylene di CARDE A24RX5 propellant). 4 inch dismeter moto lining to have a tolerance of ± 0.002 inch usig	1.3% of mice powder and based on a polypropylene glycol modified with di-2 ethyl hexyl isocyanate (this material is known as CARDE flex and has a similar composition base to or cases 6 ft. in length had been coated with a 0.100 inch thickness of this type of ng rotational speeds of 600-700 rpm.
	This type of material and technique has since t of 2750 K; their technique involves an initial uniform film, and then curing for about 30 min.	been used by Bristol Aerospace in their 15KS 25000 motor which has a flame temperature 1 spreading at 50 - 75 rpm followed by hand brushing at a slower speed to give a more . whilst blowing hot air into the rotating case.

APPENDIX 5

RESTRICTED - U.K. EYES

(B)

RESTRICTED-U.K.EYES (B)

APPENDIX 6

843-TR.847-1978

APPENDIX 6 Sheet 1

.

RESTRICTED - U.K.

EYES

(8)

													~	
	Date	Title	Reference						Synopsis					
1.	1958	Phenolic/fibre combinations	Gruntfest and Schocker SPI Conference February 1958	Fibres exa densities attributed	mined were Ny of 430 BTUs/s I to the high	lon, gla sec/ft ² f rate of	iss and 'or 60 evolut	i asbes second ion of	tos and ra s exposure hydrogen	nked • Th at 60	in that o he high re 100/12,000	order when as esistance of) ^o F.	sessed Nylon	l using flux to erosion w
2.	1959	Evaluation of plastics for rocket motor nozzles.	G.Epstein and H.A.King Paper SP.TP.16 Am Chem Soc Symposium September 1959	Assessment condition melting te of materia	s made by lic high melting mperature fit ls were:-	point, po	lled te refract nin ref	est mot ory re ractor	or (SPAR) inforcemen y coatings	at Ae ts pe were	erojet Ger erfomed be not four	neral concluo etter than or nd to be bene	led at ganic ficial	5400 ⁰ F test or other lo . Spar rat
				Highest R	lesistance									
				5		3			2		<2	1		<1
				Silica/ph Silica/ph silicone	enolic Rock) enolic- Fibre Fibre	nide Cr ₂ efrax/epo efrax/me]	Ni 84 oxy Lamine	Rockf Metco E-gla Glass	ide Al ₂ 0 ₃ Al ₂ 0 ₃ ss/epoxy /copper	Moly on a (Met	/bdenum aluminium :co)	Stainless steel mesh Asbestos ma RM.9517	Zirc Magn It powd Magn olas	conia powder nesium oxide nesium oxide, ss fibre
							10					1	Pher ball	nolic micro .oons
3.	1960	Behaviour of plastics in re-entry environments	D. L. Simmonds Mod. Plastics March 1970.	Arc plasma) jet evaluat:	.ons by 1	LO seco	nd exp	osure.	-				-
				Resin	Fibre	% The	ermal E	fficie	ncy BTU/15	- *	Wei	ight loss lt	x 10	.,
					Туре	40	55	70	75	- ppm	40	55	70	75
					Silica	7000	7800	7 900			5.84	5.29	.18	
			•	Phenolic	Nylon	7200	7600		6400		5.66	5.38		6.37
		•		1 menorie	Glass	6000	5800	4900			6.90	7.01 8	.37	
					Asbestos	5600	5900				7.27	7.45		
				· .	Silica		6900		7900			5.91		5.18
		· .		Melamine	Glass	3800	3900	4600			10.89	10.54 8	.84	
					Silica		All de	elamina	ted	7.		All delemina	ted	
				Silicone	Glass			6000			•	E	.79	
	÷			Lance many						-				
				Order for	rate of subs	rate ter	nperatu	re ris	e was(in d	ecend	ling order	.)		
				Grapt	nite, graphite	/phenoli	ic, gla	ss/phe	nolic, ast	estos	/phemolic	c, silica∕ph∈	nolic.	
				All t	the reinforce	i plastic	s took	5 to	6 times lo	nger	than the	graphite to	reach	
				0116	Same Door / But	. sempere								

.

contd..... on sheet 2

84J-TR.847-1978

	Contd.	from sheet 1			APPENDIX 6 Sheet 2
	Date	Title	Reference	Synopsis	
4.	1951	Nozzle system for hybrid propulsion system	A. J. Robinson, A. L. McAlexander G. J. Wydro	Requirement was for eluminised propellant with IRFNA injected during firing. The actemperature was 3427°C (S200°F) and pressure of 1000 psi for >30 seconds and with co of >25% by weight. Materials examined were:-	tual flame Indensable solids
			NAVWEPS Report 7802	W/Cu, W/Al $_{2}$ D $_{3}$, W/BeO, 85W/15 Ma, W/Zr D $_{2}$	
				Graphite cloth, Graphite Stainless steel film ZrO _p /phenolic	•
	and a sub-			90 Ta/10 W 90 Ta/10 W + graphite cloth XP.202 cloth Thin walled Mo or Ta	¢
			,	Concluded W impregnated with Cu gave best performance in plasma arc heat source but said to be being extended to include pressure driven liquid metal cooling through W matrices.	programme was and graphite
5.	1962	Ablative elastomeric insulation materials	R. E. Headrik Wright Patterson Air Force Base Report ASO-TDR-62-400	Sought alternatives to the 5 to 10% elongation/elastomeric insulations in wide use a these materials were:- NBR 100 pbw Phenolic resin 40 to 120 Filler 100 to 200	at the time;
				Assessment was by an early possible ASTM torch test using a 2 x 2 x $\frac{1}{2}$ inch specimen impingement but was not adopted in the final specification test. Plasma torch test The NBR compounds were only rated fair by these tests when compared with silicone, p vinyl pyridine acrylonitrile compounds all of which gave better thermal protection. The polymers examined, in alphabetical order, were:-	end 45 ⁰ flame was also used. olysuiphide and
		•		AdipreneNaturalBrominated butyl, Hycar 2202NBR Paracril DButyl RC Enjay 325/SP 2055Paracril 18-80Enjay 325/Altax. TMTDS. SulphurNeorrene URTC S 4 polybutadienePolyisopreneChloro butyl cyanosilane MD 551SBR Stypol 1000Ethylane propylene ERR.40Silicone RTVEthyl acrylate Hycar 4021Union CarbiceF8A (IF4)FAGenthane SVinyl-PyridineHypalon 40Viton B	K.1046R

contd....on Sheet 3

RESTRICTED - U.K. EYES (8)

contd..... from sheet 2

EAJ-TR.847-1978

		11012	UELEICE			Synopsis					
	1952	The performance of selected plastics materials in a high temperature environment	A. Fisher et al Naval Ordnance Laboratory Report NAVWEPS No.7390	Basis of comparison was Ind added to NBR/phenolic resin the resin constituent. Inc amount of phenolic availabl the coolent gases produced. to erosion but no instance resistance to erosion as we	ex of Perf compound reasing th e and resu The intr was found ll as givi	formance by A in amounts o e concentrat ulted in a re roduction of of any parti ng an improv	STM ton f mil, ion of duction super n cular i ed IP v	ch test 20, 40, the low of the efracto norgani alue.	(1962 60 and meltin amounn ries e. c refra	version). Ver 100 per 100 p 10 point filler 10 f temperatur 9. ZrO2 enhanc 10 tory fibre en	ious fillers w arts by weight s decreased th e resistant ch e the resistan hancing the
				If phenolic micro balloons effect was to stabilise the dislocation of the normal p homogenous pore system had	were used IP but to pre struct been built	to increase cause an in cure of the u cup by incre	the pos crease nfilled ased ad	e struc in eros NGR/pn ditions	ture by ion los enclic of mic	/ predetermined ss initially po initially, unt pro balloons.	émounts, the ssibly due to il a more
				Varying rates of PBA to phe Neoprene WRT were also subs Relevant data given in this	nolic resi tituted fo report is	n were exami or this matri	ned as x when	unfille conside	d compo ring Za	ounds. W96 sil ¹⁰ 2 as the fill	icone and er.
				UNFILLED COMPOUNDS							
		•	· · · ·	PSA Hycar 1042 pbw Phenolic Durez 12587 pbw	100 Nil	50 25 50 75	10 90	5 95	Nil 100]	
-				Time to reach 300°C	10.0	39.1 35.0	44.0	40.4	39.6	1	
-			×.	Erosion rate mils/sec	25.3	4.3 4.2	3.3	4.5	4.4		
-				Index of Performance	505	22 24	15	23	22		
				PHENOLIC MICRO BALLOONS						4	
				100 pbw PBA/90 Durez 12687 Phenolic Micro Balloons pbu % of mix	100 J Nil < 0	100 20 16.7	100 40 28.6	100 60 37.5	100 100 50		
				Time to reach 200°C secs.	51.	0 59.5	43.6	50.6	45.7		
		•		Erosion rate mils/sec.	3.	3 4.4	4.4	4.0	3.9		
				Index of Performance	13	. 15	20	16	17		
			,	DIFFERENT POLYMERS		-					
		•		Matrix	Zr02 Addition	Time to r 200 ⁰ C (each s)	Erosion • mils/	rate /s	Index of Performance	
-				100 PSA:90 Durez 12687	015.3	51.0		3.3	3	13	
The second s				Neoprene WRT		8.0		22.4	4	560	
				Neoprene WRT	200	. 13.0		42.0	3	646	
				Silicone W96	200	11.5		25.0	כ	435	
				2 pt phenolic Durez 10694	400	30.9		4.2	2	27	

contd.....on sheet 4

- T.V.

RESTRICTED - U.K.

EYES (B)

RESTRICTED 1 ⊔.К. EYES (B)

EAJ-TR.847-1978

RESTRICTED

1

U.K.

EYES

(B)

Sheet 8 Date Title Reference Synopsis 29. 1969 Structural synthesis of E.R. Scheyhing and Primary structural element of nozzle (skirt) of Stage II of Tritan III is a glass/phenolic composite materials for G.D. Summers honeycomb sandwich protected by an asbestos/phenolic prepreg tape wound at an initial 45° to ablative nozzle the mandrel. (origin not quoted) extensions. The exterior of this skirt has to be protected by silica batt because it is exposed to the plume from the roll control nozzle. Details about construction and materials used are given. 30. Opacified fibrous W.E. Grunert et al Protection against rediant heat obtainable by partially replacing some of the fibre in a multi insulation. AIAA 4th Thermophysics layer fibrous insulation, thus:-Conference. San Francisco. Fibre replaced Present Replaced by Recommended max. service temp. ^OF Glass Al foil Al flakes 900 Quartz Cu foil Cu flakes 1400 Ni foil Ni flakes 1700 31. Study of characteristics of AFML Report TR.69-54 Materials containing solid oxides showed lower erosion in hot gas/cold wall conditions than in a refractory materials under cold gas/hot wall exposure for the temperature conditions used. high velocity flight The following materials were examined:conditions. Silica plus 35%, 60% or 68% vol: vol of tungsten Zr or Si graphites A range of coated metals Hf 8, with or without 14% SiC Hf8 plus 20% or 35% SiC Zr8 alone or with 5% carbon 32. 1970 Boride composites. A new L. Kauffman Materials for use as composites for long exposures in oxidiaing environments at 2500-5000⁰F; they generation of nose cap and AIAA Mtg.Feb.1960. include: leading edge materials for Florida on Advanced Space Hf B Hf B 2.1 Hf B + 20% or 35% SiC vol: vol. re-usable lifting re-entry Transportation. systems. Zr 8, + 20% SiC vol: vol Zr 8, + 14% SiC + 30% C vol: vol Evaluation was by hot gas/cold wall plasma arc and cold gas/hot wall furnace methods showed the performance of this type of material was unrivalled by any known materials. Materials are formed into shapes by conventional hot pressing methods, such as those used for producing body armour and helicopter seats but is at present limited to components within a 6 inch to 12 inch range. 33 Heat Shield Info sheet A-40-70, Def. & N. American Rockwell evaluating Haynes 188 proprietary material, zirconia felt, Zr 8r., Materials Res.Div. silicon coated columbium, thoria dispersed Ni/Cr alloy, for use as insulation protection Staff British Embassy, in advanced projects. Washington, reporting on USAF Materials Symposium Florida, May 1970 34 Moulded glass/phenolic Aviation Weekly & Space Nozzle of this 6 inch diameter 44 ft long rocket has a moulded glass/phenolic nozzle, which inserts replace graphite Technology 3 No. 93 is designed to ablate in flight to give a controlled regulation of chamber pressure. in Astrobee D low cost July 1970 sounding rocket

APPENDIX 6

contd..... from Sheet 8 84J-TR.847-1978

A	ρ	F	5	1	D	ĭ	х	E
5	5	-	0	÷		c	1	

RESTRICTED

1

∪.К.

EYES

(8)

	Date	Title	Reference	Synopsis
35.	1970	Development of non metallic external insulation thermal protection systems for space shuttles	P. D. Gorsuch et el SAE Reprint 700771 Space Technology Forum of NASE, Meeting Los Amgeles	Performance of pyrolysed composites was improved by the addition of carbide materials - R.120 graphite fabric was graphitised after addition of Si, Si/Mo, Si/B, Si/SiC. Inhibitors added as well included a ZBr ₂ + 14% SiC + 20% C systems and an Hfc + C system.
			October 1970	Article also mentioned development of Hei silica and Hei mullite costings by Gen. Electric as well as hybrids of these materials with or without the addition of ZrO ₂ .
36.		Development status of re- usable non metallic thermal protection	D. Greenshilds et al Paper 1. Symposium NASA Langley.Research Center 1971	Oxidation resistant carbon-carbon laminates were being considered for space shuttle appli- cations and with the surface of the carbon cloth/polymer being treated with Si or Zr tefore pyrolysis. The carbide surface formed although much weaker than the substrate had good resistance to oxidation. Composites of this nature examined were:-
				Reinforcement Matrix polymer Inhibitor Phenolic and spoxides Lere said to be
		1		Graphite cloth Phenolic Si uithout an andition of a refractory
		· ·		Carbon cloth Epoxide ZGr ₂ /Si oxide.
				Carbon yarn Furfuryl resins Ti/Si ionibiton after initial our lusis has
				Grephite filament Pitch . Ti/Si been used and both pitch and furfuryl
		• • • •		Carbon filament Chemical vapour deposi- tion of Zr Si cr Hf/Si alcohol have been used to fill the pores before further pyrolysis.
				'Commercially' available materials were:
		•		Lockheed Missiles & Space Corp. L.11500 Silica fibres bonded with a silicate with a coating of $\mathrm{Cr}_2\mathrm{O}_3$; said to be re-usable up to 1530 K
		• • •	9 .	McDonnell Aerospace Corp. HCF Mullite fibres bonded by a silica, borasilicate glass, phosphate mixture and with a CoO surface for high emittance; said to be re-usable up to 1640 K.
37.	1971	Ablative thermal protection systems	L. F. Voster & C.M.Poblman Paper 5. Symposium NASA Langley Research Center 1971	Although long term resistant protections were being developed as alternatives, this paper shows that the feasibility of using cheap and easily replaced ablator panels of low defisity phenolic- nylon composites and filled silicon elastomers was not being ignored.
38.	1972	Evaluation of RSI materials	C. W. Kittler et al Batelle Columbus Labs.	Although this report dealt mainly with methods for evaluating non metallic insulating materials, mention was made of three commercial products tested:- (reference to these products not given)
			Report 1972	General Electric Hard brittle failure at about 520 K
				Lockheed Survived 1367 K without failure
				McDonnell Douglas Softened at about 1089 K
1				

contd.....from Sheet 10

contd.....from Sheet 9 BAJ_TR.847-1978

RESTRICTED

1

U.K.

EYES (B)

				· . ·					APPENDI) Sheet 10
D	ate	Title	Reference		Synopsis	- Martine - Tear - Constantine		``	
		Advanced solid propellant motor insulation	P. L. Smith and R. F. Russ Aerojet Solid Propulsion Co. Sacramento Report CR-11413 July 1972	Basic objective was to prov Aerojet General space propu 4030 EPDM used at the time, propellant motor.	ide an improved light weight lsion motor. The target was screening by the Laboratory	insulation a two fold Insulation	for a loc improvem Test Eva	w thrust ent on th luation ()	long durati e Gen Gard LITE) solid
				Binders examined included	EPR, NBR CTPB, HT as premouldings as mas	PB, PBAN tics	Phenolics as hard r	5 Diastice	
				and the fillers examined included	Aluminium silicate Ammonium benzoate Ammonium sulabate	Micert	a (paper 1 crushed	reinforce d and grou	d phenolic) and
				•	Antimony oxide Asbestos Hexa methylene triamine Kaowool	Microb	alloons (E F s	orosilica DT 202 hi silica)	ate glass a .gh strengt
						Refras	il powder		
	•			Two promising materials both insulation for a SVM2 chambe The overall conclusion was t at least 1.6 times better th) based on PBAN, reference IB1 r. hat a dual layer of IBT 123 i an Gen Gard 4030.	122 and 3	18T 124 we an I8T 12	re evalua 4 outer 1	ited as ayer was
				The use of ammonium benzoate their thermal degradation to	, ammonium sulphate or hexa m ammonia and then to hydrogen	ethylene f was of pa	triamine o articular	r coolant	s by
. 19	73	MC M ¹ O ₂ Composites. A new thermal insulator	R.E. Riley and J.M. Taub Los Alamos Labs.Univ. California, Report LA 5136 Feb.1973	Development of refractory m insulation within the Rover atmosphere, It is believed formula MMC O, where M. Ml	etal carbide - metal oxide co nuclear reactor where it has these materials operate by f can be Ti Jr Hf V W To	mposites f to withst orming oxy	for use in and 2000 carbides	high tem C in a hy of genera	perature drogen 1
		• •		x y Composites examined listed (were:	in and U.			
				Zr0 ₂ ZrC NbG		U02	ZrC	HFC	Hfo
		, * , ,		75 25 with & u	without Co. stabilisation	75	25		٤
				50 50		50	50		
				25 75		75		25	
		· · ·		25 75		50		50	
				50 50				25	75
				75 25				50	75
						L		50	50
		Refractory chamber materials for N ₂ O ₄ /amine propellants	J.G. Campbell AFRPL Report TR-73-31	Evaluation of passively cost washers of zirconium pyrocar graphite. Pyrolytic graphi f mils/eec. The lowert error	ed nozzles by test firings a bide and Hafmium pyrocarbide e coated Carbitex (Carborundu	eroded bai	lbf in ⁻² . dly if com ve low ero	Edgewise pared to sion rate	orientate pyrolytic of about
				two segements to resist the	sion rate was obtained with zi shock of thermal expansion at	rconium di	ibromide (Man Labs)	made in
				Melting points suched		, illing.			
					4620 ⁰ C 8e 0				
				a.	4690 Ca D				
					4980 Ce n				
1					5070 Mg D	x 1			
					5282 HfD2				
					5970 Th0 ₂	1			

contd.....from Sheet 10

BAJ_TR.847-1978

RESTRICTED

1

U.K.

EYES (8)

											APPE	VDIX 6
	Date	Title	Reference				Synopsis					
2.	1973	Reliability and effective thermal conductivity of three metallic-ceramic composite insulating	H.G. Price Jr. et al NASA T.N. 07392	Grade coatings (tested. (Grading and coatings we)	on the insid g was employ re applied b	e of a LOX ed to overc y plasma sp	motor thrust come the shar oray).	; chamber p transit	were ex ion int	xamined by troduced in	static mo a singlo	otor firi e coating
		hydrogen-oxygen rockets		La	yer 1	Layers 2,3	and 4	Laver 5	Si	TVived .		
				Mc	р	3 off Mo/2 varying co	r0 ₂ of mposition	Hf02/Zr0	2 17 to	7 cycles fo otal of 213	ra s.	
				Mc		3 off Nich	rome/M2 ⁰ 3	A1203	6 to	cycles for otal of 182	a s.	
				Mc		2 layers o Nichrome	^{Al} 2 ^D 3	-	6	cycles	e	
				• A]	ll coatings u	were though	t to be capa	ble of fu	rther c	ycling.		
5.	1974	Performance of materials in a ramjet environment	L.S. Cohen et al AIAA/ASMF Conference Boston July, 1974	A gaseous propar against mission to replace the 6 examined were:-	ne/air flame requirements 50/85 mils th	was used t s of at lea nick zircon	o test blast st 200 s. at ia liner in	tubes 3.0 2300 or an air lag	B2 in. 3700 ⁰ F unched	diameter a . Candida low volume	nd 16 inc tes were ramjet.	h length to be us Materia
						par	ts by weight					
				Ref.	Resin and catalyst	Powder	Silica Microspher	e Fibre	SiC	Asbestos	Carbon fibre	Zr02
				DC93.104	46	50+510						+
				GE 655	65	20	6				4	
1				JM 700	40					60		
		•		Fiberite FM.2222	40			60	130			
			•	United A/C Labs DC	40			50			4	
				Formulae	71		17			12		
l					70	20	6				4	
I				GE	42			· ·				
					75	11	10				4	54
l				ЭМ	69		19			12		
				DC 93.104 was fo and al little	und to be th though consi change in t	e more prom derable ero hroat area	nising ablati osion occurre	ve materi d, swelli	al for ng of f	all 3 of t the char re	he ALVRJ sulted in	missions n
				GE 655 was in but di attrac	ferior and w d not swell tive if the	ould have t or fissure flame was t	to be used as in the throa not enough to	a much t it area. cause me	hicker Fiberit ltino-	layer than te 2222 cou	DC 93.10 ld be	34

2

contd.....from Sheet 11

84J-TR.847-1978

RESTRICTED

1

U.K.

EYES

(8)

Sheet 12 Date Title Reference Synopsis 44. 1974 High chamber pressure W.A. Stephen et al A summary of results obtained between 1971 and 1974 when evaluating effect of propellant blast tube and nozzle United Technology Corp. chemistry, solids loading and blast tube configuration upon nozzle materials in high chamber material evaluation Report 2410-FR pressure motors within the 2500/3500 lb in^{-2} range, using the UTC Hippo motor. Vol.1 Materials tested were:-As blast pipes Carbon, polycrystalline graphite, carbon/carbon composites, silica, hybrids of carbon and silica, phenolics As aft closures Glass phenolic or elastomers All three carbon/carbon composites tested failed by ejection of the liner. Recommendations made were:-Aft closure Durez 16771 glass phenolic or R.155 EPDM/asbestos Fwd.entrance cap Flat laminate of MX.4926 (carbon/phenolic) Aft entrance cap Graphitex G.90 Techmet wire wound tungsten Throat insert Exit cone MX.4926 or FM.5055 45. Castable thermal insulation A.J. Mountvalar et al Formulations of low density ceramic foams using Zircon (Zr 0, SiO,) as the major constituent for use as heat shields Ceramic Bull. 53 No.11 bound by either aqueous potassium silicate or mono aluminium dihydrogen phosphate, and foamed with egg albumin are given. In some instances refractory fibres such as Fibrefrax or fillers 1974 such as alumina were added. 46. 1975 Development programme to W.G. Long. 5 Hybrid blankets of Mullite and Kaowool were made by wet laying processes from stable fibres. produce Mullite fibre NASA report CR.134803 insulation Kaowool 100 90 70 55 25 10 Mullite 10 30 45 75 90 Additions of Mullite > 10% improved the dimensional stability and the refractiveness of these blankets at either 1250° or 1371°C. Analysis of fibres given was A1,0, Ti0, SiO, ⁸2⁰3 P,0 FeO Mullite 77 17 4.5 1.5 Kaowool 45 52 1.3 1.7 47. Furnace Insulation J. M. Beilacque Two new ceramic fibres have been produced for insulating furnaces:-Jl. Canadian Ceramic Soc.44 50:50 alumina/silica for continuous service up to 2300° F 69-71 62:38 alumina/silica for continuous service up to 2600°C

RESTRICTED - U.K. EVES (B)

APPENDIX 6

And remained as a ...

RESTRICTED

8

U.K.

EYE

S

(B

contd.....from Sheet 3 843-TR.847-1978 APPENDIX 6 Sheet 4 Date Title Reference Synopsis 1962 7. Metal-phenoxyaldehyde A. J. Landry, et al Examined metal phenoxy-aldehyde high polymers and in particular Mg²-Ni phenoxys as possible heat polymers NAVORD Report No.6390 resisting insulation for rocket motor components. 8. Refractory additives to US Rubber Co. report to Effect of replacing the potessium exalate filler in a nitrile/phenolic resin compound was examined. rubber formulations This low temperature decomposing filler was replaced by selected refractories limiting the addition Bur Naval Weapons October 1962. made so that the elongation at break of the cured compound was not less than 5% to accommodate the 3% elongation needed to meet the increase in motor case diameter that occurs in firing. Only fillers were examined because it was considered that the polymer should commence decomposing endothermically about 2040C (4000F) to ensure that the interface between the case and the insulation does not reach elevated temperature until all the insulation thickness has pyrolysed. Materials examined in preferred order were:-Zirconie, graphite, Periolese (Hagnesia) Flint, Silicon Carbide, Silicon Nitride, Titanium Sulphide. Laboratory techniques for 9. 1963 H. S. Schwartz Author distinguished between three categories of materials, thus:studying thermally Aerospece 59 No.40 64-80 Unreinforced. Materials which decompose into gases ablative plastics. Cat.1 e.g. PTFE, polyethylane. when heated to leave almost no char. polyamides & acrylics. ٠ Decompose to produce chars as well Cat.2 e.g. phenolics, phenyl silanes, 88 08585. furanes, special epoxide formulations and some elastomers. Reinforced. Cat.3 Category 2 plastics containing reinforcements of nylon, cotton, glass, asbestos or silica fibres or combinations of them. Paper gave following data for a 62% glass fibre 38% phenolic composite. Region Ratio by weight С н п N Residue Carbon/residue Undegraded 28.75 2.15 7.66 0.34 61.60 0.46 Volatile loss regions 27.77 1.93 6.87 0.13 63.30 0.44 27.04 1.59 5.75 0.17 65.45 0.41 Char Inner 23.32 0.39 1.40 0.12 74.77 G. 31 Middle 26.96 0.16 0.93 0.10 71.85 0.38 Outer 30.00 0.09 -0.20 66.64 0.50 10. Silice/phenolic moulding McDonnell Aircraft Reported following tensile strength of mouldings produced under various moulding pressures from materials Report No. A.751 1 x 1 inch square chopped fibre from Refrasil MX.2625 prepreg. fabrics. Moulding pressure Tensile strength as % of room temperature strength obtained 1bf in-2 for a moulding made at 1500 lbf in-2, when tested at Room 500°F 7000F 250 52 20 17 500 54 23 18 750 82 29 25 1050 99 34 27 1500 100 34 25 (value not given) 11. Thermal protection of rocket E. P. Bartlett Reviews relative merits of methods for producing combustion chambers and nozzles for liquid fuelled motor structures Aerospace Eng. rocket motors and claimed that conclusions were applicable to solid fuelled motors as well. Jan.1963 86-89 Concluded most promising lightweight designs would use linings of high density, polycrystelline or pyrolytic graphites but the use of tungsten or tentelum carbide as throat inserts should be considered also because of the increased resistance to erosion.

contd..... Sheet 5.

contd.....from sheet 4

BAJ-TR.847-1978

RESTRICTED

1

U.K.

EYES

(B)

Sheet 5 Title Date Reference Synopsis 12. 1963 Programme to examine A proposal programme of alpha rod and high pressure plasma arc tests; it listed the systems that were D. Caum et al ablaters NOL-TR-63-100 in use at the time and which were to be used as standards; they were:asbestos filled phenolics glass reinforced epoxides nitrile & silicone rubbers containing asbestos & inorganic salts 13. 1965 Fabrication characteristics 260 inch diameter nozzle of Air Force 623A large booster rocket led to a need to develop tape wrapping W. E. Winter of ablative plastics methods beyond their use for existing medium to large conical components which used silica, carbon Paper 8th National SAMPE prepreg. tape for construct-Symposium Aerospace/ or graphite fibres (and tapes) impregnated with phenolic resin. ion of large rocket nozzles Hydrospace. 14 Carbon and graphite R. B. Millington Regraphitisation of carbon/phenolic structures produced from rayon precursors was described; it ablative reinforcements Paper 8th National SAMPE involved the following cycling in an Argon atmosphere:-Symposium Aerospace/ Place in furnace at 200°F Hydrospace. Heat to 1500°F at 50°F/5 min.rate Hold at 1500°F for 30 mins. Cool to 200°F before removing. Material had been assessed for the following projects as -Sections in the nozzle of Polaris A3 exit cones Cone linings of UTC Throat approach of Spar mod.II test motor Throat and exit sections of solid propellant motors Thrust chamber linings in Rocketdyne fluorine test firing 15. Thermal protection of L.M. Harold & E.S.D. Diamont Minuteman has an external insulation of sheet cork to protect its structure during launch. Minuteman Paper 2nd AIAA Aerospace This sheet is AC 2755 (Armstrong Cork Co.) and is finely ground cork in a phenolic resin Conference 1965 matrix. Main research activity was the development of a mathematical model from which thermal performance of cork under launch conditions might be predicted, so the behaviour of cork over a wide range of thicknesses and heating intensities was examined. 16. Optimisation of reinforced . W.C. Jones & D.C. Siverts Techniques being considered for nozzles of Titan III, Surveyor and 156 inch large booster plastics in ablative rocket Paper 8th National SAMPE motors were compression moulding rosette lay-ups as alternative to tape wrapping from motor nozzle and re-entry straight or bias cut tapes. Features of this, then, novel method were described. Symposium Aerospace/ body applications. Hydrospace. Performance assurance for 17. R.M. Buck Main feature of paper was publication of Fiberite's 'Snapcure' prepregs which cured at a prientated fibre ablative Paper 8th National SAMPE temperature only slightly above their softening (tacking) temperature. components. Symposium Aerospace/ Hydrospace. Materials available included woven fabrics, mats, papers or felts produced as prepregs and containing fibres such as inorganic oxide (e.g. Zirconia), glass, silica, asbestos, carbon or graphite and synthetics (e.g. Nylon). 18. Recent advances in high J.T. Trainer Author cited three main groups for use in three expected exposures - they included :temperature resin binders-Paper 8th National SAMPE A survey. Symposium Aerospace/ Hydrospace. Type 1 204 - 232°C Type 2 316 - 371°C Type 3 427 - 482°C Phenolics Polybenzamidazoles Some boron hydride based polymers Phenyl silanes Du Pont PI 3301 polymide Olin Mathieson Pop I Pop II Dow QX 2682 Diphenyl oxide Polybenzoxazoles

High temperature epoxides

Polyphenylene sulphide

contd....on Sheet 6

Pop III

All still in development states

APPENDIX 6

contd.....from Sheet 5 823-79.847-1978

				Stept 5
Date	T(+)=	Reference	Turner I a	
	11612	Reference	Jynopsis	· · · · · ·
19. 1965	The A3 Polaris mose fairing. A structural composite of wood and aluminium	F.8. Johnson & V.P. Manone Faper 8th SAMPE Symposium Aerospace∕Hydrospace	Details development and construction techniques used for the 94 inch long by 54 base monocoque bullet shaped shell used on this ICDM.	inch dismeter
20.	Continuoús bias tape wrapping of ablative components.	S. Salzinger Paper 8th SAMPE Symposium Aerospace/Hydrospace	Comparents needed by 1955 could no longer be produced satisfactorily by compres so tape wrapped hardware was being made for Polaris A3, an advanced design of X Titan II, Titan III and the 156 and 260 inch solid booster motor.	sion moulding inutemen,
21.	Carbon dioxide frost as an insulation for hypersonic spacecraft.	J.P. Clay Paper 2th SAMPE Symposium Aerospace/Hydrospace	A transpirational cooling by the evaporation of solid carten diaxide supported wool batt was proposed for protecting a re-usable hypersonic spacecraft from th aerodynamic heating during its exit from the earth's atmosphere.	th a quartz we effect of .
22.	Deposition of films from plasma.	F.L. Moritz et el Paper 8th SAMPE Symposium Aerospace/Hydrospace	Thin insulation films of silica can be deposited by plasma arc pyrolysis of eth Metal oxides of either aluminium or tantalum can also be deposited by a glow of the presence of oxygen.	wl silicate. Ischarge in
23.	Impregnated foam ceramic insulating materials.	M.A.Schwartz & T.A.Greening Paper 8th SAMPE Symposium Aerospace/Hydrospace	Describes United Technology Centres' techniques. Process is a two stage in whi skeleton is first produced and is then impregnated with a coolant material such phenolic resin. The basic skeleton is formed from fillers and a liquid binder sodium silicate or phosphoric acid) and wetting and foaming agents are added al	ch a ceramic 1 25 2 (usually lso to the mix.
			Powders used to form the skeleton have included asbestos, alumina, magnesia, si zirconia, titanium and zirconium carbide and zirconium boride, and silica and m fibres and micro balloons have also been used as additional fillers.	lica, nagnesis
			In general, silicate bonded foams [*] had the best resistance in oxy-acetylene tord a zirconia skeleton impregnated with JC.1006 had withatood plasma and tests wel motor firing tests had included throats and thrust chamber linings which had wi 60 to 90 sec. duration exposure to flame temperatures of 7000 - 6000 ⁰ 7 at 100 -	th tests and .1. Static ithstood - 150 lbf in ⁻² .
24.	Design of ablative thermal protection systems.	J.N. Kotanchick & R.8. Erb Paper 8th SAMPE Symposium Aerospace/Hydrospace	An investigation made into how existing ablative coatings might be improved fro the Apollo projects. It was concluded that charring ablators of the filled epo unlikely to be greatly improved beyond the materials which had already been sev Apollo and which were improvements from those used in the earlier Mercury space	im those used in ixide type were relaped for reraft.
25. 1956	A critique of internal insulation materials for solid propeliant rocket motors.	V.F. Hribar J. Spececraft 3 1434/6 No.9	Effect of adding silica pouder and asbestos fibres to NSR (Buna N) SER (Buna S) studied, screening by static motor firing tests in three different sites (5 inc motors at Allegony Ballistics Lab, the TV132 motor at Thickol Corporation and t at Aerojat General).) and butyl was th and 29 inch the ETM motor
			The NGR with silica and asbestos gave the better performance as a case lining i addition of asbestos increased the strength as well as the resistance to calati silica addition increased the melt viscosity and also improved the resistance t	nsulant and the on. The corosion.
	•	· · ·	Silica filled SOR had better aging characteristics and had advantage when a shr was needed and also had good compatibility with double base propellant with low glycerine uptake. Fibre size and orientation was more critical in SSR than in	inkage liner A nitro K3R compounds.
			New materials reported as being under development at Aerospace Corporation E1 S	iegunda wera:-
		•	NGR - phenolic with inorganic hydrates Butyl with potassium titanate filler Polypropylene/spowide compounds	
26. 1967	Phoenix missile composite thermal insulation system	M.A. Lewis et al Paper 1-2 SAMPE Symposium on Advances in Structural	Materials were selected initially by exposure to high intensity infra red heating a by simulated high spend captive flight conditions in the NASA Langley het flow turn Materials being considered were:-	and eventually nel.
		Lomposites	Cork Sheet (Insulcork 2755), Asbestos paper/phenolic (MX.5700), silica paper/pr (MX.5207), two ablative contines (I.500-4 and X43-44)	nenolic
			The ork sheet was found to be the more effective of these materials and could be a aluminium load beering structure with an overlay of a Romex/epoxy laminate (Rarmoo protect the cork from damage by obrusion and/or inpact, ugainst fungal attack and a reduce its adsorption of modeture or harmful attract fluids.	used on 570) to also to

contd.....from Sheet 12 BAJ-TR.847-1978

RESTRICTED

1

U.K. EYES

(8)

	Date	Title	Reference	Synopsis
48.	1975	Role of silica and quartz phenolics in ramjet	W. H. Miller et al ASME Intersociety	Reviews candidate materials for ramjet engines needing insulation in the nozzle entrance, throat and exit cones. Materials considered by Rocketdyne were:-
· . •	÷.	1022168	Conference San Francísco July 1975	Silicone rubber/fibre reinforcedInsufficient strength contribution-erratic surface ablationAsbestos/phenolicAsbestos melts at about 1482°CSilica/phenolicSilica* * 3150°CQuartz/phenolicQuartz* * 3216°C
	l a			Both silica and quartz have high viscosity when molten and would not readily wipe off a throat surface below about 1800/1900°C so Fiberite products MX 1646 (21.4%silica) and MXQ.191 (29% quartz), MIL-A-R-9299 prepregs of 581 Astro quartz (99.04% silica), Siltemp 84 (99.99% silica) were considered further.
				Latter two materials were used for moulding as $\frac{1}{2}$ in x $\frac{1}{2}$ in chopped squares which were claimed to give almost perpendicular alignment of the fibre to the gas flow. MXQ.191 had low resin flow and had to be moulded at 5000 lb in ⁻² compared with 3000 lb in ⁻² needed for MX.2646 but both required a stepped and long cure and post cure under pressure throughout. Resin glaze was removed from the mouldings by grit blast before the post cure and the long cure and post cur were needed to prevent a retention of reaction products which might cause blistering. 16 nozzles were tested on a sub scale ram burner by Martin Marietta at flame temperatures of 2056-2389K for times of between 60-600 secs and pressures of 40-75 lb in ⁻² .
	.			MX.2646 was thought to be the more practical material.
9.	1976	Evaluation of insulating materials for advanced motor systems	R. T. Robinson NAVWEPS report NWO TP.5693 May 1976.	Study was concerned with nozzle inserts and used two different propellants with the following material as blast tube linings.
				C518DC 93.104 (contains 8-10% carbon fibres)6 star centred0.2 machDC 77.151 (50% volume of the silica in DC 93.104 was replacedCTPB + 15% Alby 16-20% volume of carbon fibre)
		•		1,500 lb in ⁻² D.4 mach DC 77.151 DC 77.152 (as DC 77.151 but with a 50% by volume replacement of Zirconia for the silica)
			•	RS 2DC 93.104non aluminisedGE 655 resin and silica to a NAVWEPS formulastar centredR 155 EPT polymerHTPB 9 s burnGE 655 to DC.104 type of formulationhighly corrosiveIrish Refrasil (chromic oxide treated silica)products
				The following carbon fibre materials were examined as nozzle extensions (venturi) linings
				Matrix Reinforcement Precursor
				Rondom CFA; carbon fibre choppings Fabric FM 5670 All IRC rayon EC 201 Diced fabric ; x ; inch square
		а. — — — — — — — — — — — — — — — — — — —		Chopped squares CCA 2-1(1 in x 1 in.) All ENKA rayon FAN chopped square 1 in x 1 in.)
				Conclusions reached were that the highest fibre content silicone rubber was probably the best for C 518 propellant but that Irish Refrasil had the least erosion with RS2 propellent. A NAVWEPS formulation of GE 655 was the next best performer and the R155 was the worst. DC 93.104 eroded more with the C.518 than with the RS2 propellant.

NGCHERE

APPENDIX 6

contd.....from Sheet 13 BAJ-TR.847-1978

RESTRICTED

1

U.K.

EYES (8)

				APPENDIX 5 Sheet 19
	Date	Title	Reference	. Synopsis
50.	1976	Evaluation of carbon/carbon composite nose tip materials	J.C.Stetson'& J.C.Schultz AMMRC Report CTR-76-34	Reports results of a programme which sought ablatives for use as plug or shell nose tips of an Advanced Terminal Defence Interceptor (ATDI) with the secondary need to find new materials for the next generation Anti Ballistic Missiles. This assessment used A.F. Dynamics Lab. 50 M Ustt arc jet facility at 75-100 atmospheres stagnation pressure or McDonnell Aircraft high impact pressure test unit (166 atmospheres stagnation pressure).
				Composites examined were all made from woven fabrics and Ashland A.240 pitch and were densified to 1.90 Mg m ⁻³ at 10,000 lb in ⁻² at Fibre Materials Inc. Biddeford Maine before being grephitized in billet form at 2700 ⁰ C.
			×	Fibres were woven by Fiber Materials Inc. from Thornel T.400(PAN) T.50 or T.25 (both rayon) and Thornel P experimental fibre made from a pitch precursor.
		, , , , ,		The effects of reinforcing yarn types, weave spacings and weave dimensions of 14 carbon/carbon composites were evaluated to show that materials produced from fine weaves of Thornel 50 rayon yarns in an orthogonal weave configuration could lead to stable symmetrical nose tip shapes and could also provide the thermostructural and bonding load capabilities needed for an ATOI mission. 100% of the virgin filament strength was achieved for composites produced from the experimental P grade yarns whereas only about 60% of this strength was measured for comparable composites for Thornel 50 to suggest that the yarn/matrix bond had improved marked/w with this binder. Further
				investigation was however needed.
	and a second			A higher erosion resisting material, such as tungsten or thoria, however, is needed as a sub tip to meet a severe thunderstorm condition.
51		Nozzle design with pitch precursors	Paper 76.692 AIAA/SAE 12th Propulsion Conference Paelo Alto July 1976	Materials were evaluated by arc plasma tests against their potential application as lining for a space shuttle solid rocket motor application. The 2.5 inch diameter throat HIPPO motor was used in static motor firings for this assessment (it burns for 33 s and develops about 560 lb in ⁻² chamber pressure).
		• •	- 	Thepresent design of this throat insulation is nylon fibre/phenolic and canvas/phenolic has also been considered. The carbon/carbon composites considered were:-
	2			Precursor Commercial reference (if given)
	÷	· · ·		Rayon Pitch Mat Fiberite MXG 1033F, MXG 313P, Hexcel 46 SP08 Cloth Hybrid rayon end pitch US Polymeric FM 5790

RESTRICTED - U.K. EYES (B)

END

RESTRICTED-U.K. EYES (B)

APPENDIX 7

BAJ-TR.847-1978	3
-----------------	---

All these missiles were still deployed in 1977	Nature and purpose •	Length m	Diameter mm	Wing/fin span mm	kg Wéight	MƘ Speed	Motor Manufacturer
SPARROW III	Short range air to air, all aspect, all weather missile-radar guided (X band) •A see based surface to air version exists.	3.56	200	1000	200	3	Aerojet.General Corporation
SIDEWINDER 1C	Short/medium range air to eir semi active radar homing or infra red guided missile. Entered service 1955 mainly against US Navy requirements.	2.84	127	609	84	2	North American Rockwell Rocketdyne Division
PHOENIX	Long range cruise flight high performance air to air weapon, radar homing used on Fl4 Tomcat interceptor.	3.96	380	914	380	-	North American Rockwell Rocketdyne Division.
CCNDOR	Medium range supersonic air to surface cruise missile. Remote TV guidance for fire then launch sequence. An American equivalent of Martel. Designed originally for liquid fuelled motor but changed mid 1969 to solid propellant motor. Production 215 off authorised for 1976/77.	4.22	430	135	966		North American Rockwell Rocketdyne Division.
MINUTE MAN II	Intercontinental ballistic missile Site launched solid propellant Wing VI became operational 1966	18.2	Approx. 1600 et 1st stage inter- change		31,750	> 24,000 . km/h at burn- out	Aerojet General SR.19-10-1 (Ablative type re-entry vehicle is made by AVCC)
PERSHING I .	Nuclear warheaded ground to ground battlefield support missile. Vehicle mounted for mobility. Inertia guidance. Three battalions operative 1970. Production ceased in 1971 but still operative in 1976.	10.5	1,000	-	4,600	3	Thickel Chemical Corporation.
POLARIS A3	Fleet bellistic missile submarine launched, inertia guided. Production ceased 1968 but missile still operative in 1977.	7,55	1,370	•	13,600	-	Aerojat Seneral Corp. and Hercules Inc.
POSEIDON C3	Fleet ballistic missile submarine launched, successor to Polaris A2, A3 missiles having doubled accuracy. Compatible with existing Polaris launch installations. Multiple Independently Targeted Reentry Vehicles warhead. Improved inertia guidance interfacing with a new ships inertia navigation system. Operative on 31 Nevy FEX vessels in 1977.	10.35	1,880	-	29,480	-	Lockheed Missiles & Space Co.

RESTRICTED-U.K. EYES(B)

APPENDIX 3

BAJ_TR.847-1978

RESTRICTED

1

U.K.

EYES

(B)

APPENDIX 3 Sheet 1

Material	Report Reference	Synopsis
	BAJ-T.R.635-1972	A report that mouldings of this type were being used in critical areas of a missile by another country initiated work using short choppings of a chromo methacrylatochloride sized fibre that was available commercially in the U.K. at the time. (Fibreglass AR.16).
		It was found that high strength mouldings could be produced if the fibre was given a pretreatment with A.1100 amino silana before it was mixed with either a phenolic resole syrup or a powdered novolak resin. The novolak phenolic resin gave the more consistent mixes and it was shown also that a simple tumble mixer could replace a sigma bladed machine with advantage. Mixing times were found to be relatively critical if glass/resin ratios were to be maintained at the required levels.
		Mechanical properties of moulded test boards were obtained for seven different levels of glass content ranging from 34.5% to 69.4% by weight to show that optimum tensile strength was being obtained with mixes containing between 55% and 70% by weight of fibre. Various fibre content mixes were assessed also by plasma arc torch tests using small hollow cylindrical mouldings.
		Shop moulding trials were then made to produce end plate linings by compression moulding and blast pipe linings by displacement moulding. All but the highest glass content mix moulded readily but some wear of the gating in the transfer tool was observed after the higher fibre content materials had been moulded.
	•	Selected mouldings were tested in static firing tests in the 203 mm SC test motor at Westcott to demonstrate that this type of material had promise especially the 60% fibre content which eroded less than the resinated asbestos material normally used for these linings. Erosion losses fell as fibre content fell but char thickness, and consequently the total affected thickness, seemed to be at a minimum for the 50% fibre content material.
	BAJ-TR.767-1975	The original objective of this work was to establish whether part of the glass fibre might be replaced by another filling to give an improved performance rocket motor insulation; it commenced using Volan treated AR.16 chopped fibre but as its supplier discontinued production during the programme alternatives had to be considered. A newly introduced commercial choppings of a fibre which had been coated with a phenolic compatible size was introduced and in-house choppings of silane treated E, R and S composition glass rovings were also examined.
		During the work it was established that none of the alternative chopped fibres needed a pretreatment with A.1100 silane to give a high strength test board and that the strength of these boards reflected the strength differences of the original rovings from which the fibres had been chopped.
	• • • •	The supplementary fillers which replaced either 10% or 50% pbw of the glass fibre in experimental mixes were alumina powder, asbestos 50-1 chrysotile fibre, boron nitride powder, calcium carbonate, cobalt linoleate gum, cobalt phosphate, ferric oxide pigment, Fibrefrax milled fibre, glass ballotini, manganese dioxide, nickel phosphate, pumice powder, silicon carbide fine mesh powder and zinc oxide pigment. All were added singly and combinations of them were not considered. Mixes were assessed by determining tensile strength and elongation at break of mouldings and by the Banwell ASTM-E285-70 oxy-acetylene ablative torch test facility.
		The effect of introducing supplementary fillers was to reduce both the mechanical strength and the resistance of the moulding to the ASTM torch conditions but high strength mouldings could be produced from all the 'all glass filler' formulations examined and were appreciably higher than those obtained for a comparable resinated asbestos material.
		It was concluded that a glass/phenolic moulding material might be pursued as an alternative for resinated asbestos moulding material as rocket motor insulation and tentative design figures of 'mean minus three standard deviations' were tabulated for formulations that might be considered.
Inquel Notor	BAJ-PTM.190-1977 (PTM reports are produced for in- house use and are not normally circulated externally).	The Silenka 118 fibre used in previous work had been withdrawn and replaced by another phenolic compatible chopped glass - Silenka A.8071. This report describes an evaluation of this replacement fibre against its use in a moulding compound from which combustion chamber linings for a packaged liquid motor might be produced. Only a 50:50 fibre/resin formulation was considered but the resin used was changed from J.1011H to J.1004H to obtain the faster flowing material needed for this application (the cup flow time was raised to 6 seconds from the previous 13 seconds). This faster flow was flow the valuation. In view of the possibly advantageous, fibre flow at one end of the moulded linings during a shop floor evaluation. In view of the possible project application four separate batches of each of the two different resin formulations were produced and assessed for batch to batch variability using consistency within mechanical properties as the criteria. Experimental linings were then moulded for static firing tests in a liquid motor at Westcott. These firing tests were most promising and the moulding material can now be considered further as an alternative for the much more expensive silica/ phenolic edgewise tape wound lining used at present in a project motor.

contd..... on sheet 2

BAJ-TR.847-1978

RESTRICTED

8

U.K.

EYES

(B)

cont'd.... from sheet 1.

Material	Report Reference	Synapsis
SILICA/PHENOLIC	Part 2 BAJ-TR.650-1972	Difficulty had been experienced when using an 'all silica' formulation to produce end plate linings by compression moulding (these mouldings were being used as controls in the Part 1 work where asbestos/silica mixes were being studied). Changes were therefore made in the type and also the amount of resin in the mix; various post curing technique were also examined and pretreating the fibre with an amino silane was studied.
		Resin contents were reduced from 49.5 pbw to 39.6, 34.6 and finally to 29.7 pbw to indicate that the limit of mouldability of this type of compound was at about a 30% pbw content. Tensile strength fell with decrease in resin content but the higher strength materials would not give crack-free mouldings unless a 4 hour post cure under pressure at 120°C was employed.
		The silane addition had a beneficial effect and its effect was to increase the tensile strength of mouldings for two differing resin content formulations.
		Twelve alternative resins were substituted for the novolak phenolic resin used initially and included other novolak as well as resole phenolics, Xylok 210 and an aromatic amine cured DGEBA epoxide. The tensile strength of the mouldings from these mixes varied from 10.5 to 50.5 MPa according to direction of the specimen and resin used and it was concluded that a resin change could be desirable.
	•	Most of the alternative formulations were then assessed as miniature blast pipe specimens in the Banwell plasma arc test facility to provide further evidence for a need to change the resin matrix in this type of mix. Although one of the two preferred resins was a resole syrup the other resoles tested were less satisfactory than novolak phenolic resins under this assessment.
	Part of BAJ-TR.768-1975	Five different resins were used to produce 60:40 fibre/resin mixes from 19 mm nominal length silica fibres for a possible use as the combustion chamber insulation in a liquid motor. Assessment was by mechanical properties of test mouldings and by the Banwell ASTM-E-285-70 oxy-acetylene torch test.
		All five formulations were found to be superior to a commercially available silica/phenolic compound which had at one time been used on this project motor and offered a higher strain compatibility and strength than resinated asbestos material. The compound having the highest strength had poor performance in the torch test but a compromise between these two characteristics could be made and a formulation recommended.
· · · · · · · · · · · · · · · · · · ·	•	Mouldings from all these silica/phenolic mixes failed in a brittle mode and it would seem that this can be attributed to the rapid disintegration of the fibre into a powder during mixing. It is therefore possible that either an 'all glass' or a silica/glass combination might be a wise choice for the project motor being considered.
ASBESTOS/PHENOLIC	BAJ-TR.431-1967 and BAJ-TR.470-1968	These two reports describe actions taken at Banwell following the cessation of supplies of chrysotile asbestos from Rhodesia needed for the commercial production of Durestos RA.51 moulding flock. Alternative materials were produced from three different grades of chrysotile asbestos from Carey Mines, E. Quebec, Canada and evaluated. At the same time a number of different types of mixers were examined and recommendations made that a Lodige Morton machine should be purchased.
this widely used type of insulation have been under study for several		Initial productions at Banwell were promising and met most of the DTD.5539 requirements. Firing trials at Westcott showed that it was slightly superior to durestos RA.51 when tested as a blast pipe lining in the 203 mm SC test motor.
years at Banwell.	BAJ-TR.544-1970 and BAJ-TR.576-1971	An assessment of fibre alingment that exists in simple compression mouldings showed that asbestos fibre in an asbestos/phenolic moulding compound tended to align in the shortest spew direction to give higher tensile strengths and elongation at break parallel to the shorter side of a 114 x 279 mm test board. This directionality was negligible for a square board 254 x 254 mm.
		The second report describes some early work on the role of the release agent in a resinated asbestos material from which it was concluded that the presence of zinc stearate reduced the moulded tensile strength as it was raised from nil to 3.65% by weight of the mix. When graphite powder was added to the mix to improve its flow characteristics, it was found that the difference in tensile strength within the two directions of the rectangular test board decreased as the graphite addition was raised until it had become 34.7% by wt. of the total mix.
		Studies were reported also on how prepregs of asbestos yarns could be used to achieve a preferred orientation of the fibre in a composite using flat sheets and also a torroidal winding technique. A blast pipe of this latter type was produced by a stacked ring technique but did not withstand a static firing on the 203 mm SC test motor at Westcott.
	1	

APPENDIX 3 Sheet 2

842-TR. 847-1978

RESTRICTED

1 1

U.K. EYES (8)

5

contdia..... from sheet 2

. .,

APPENDIX 3 Sheet 3

1	T	
	8	
Material	Report Reference	Synopsis
ASBESTOS/PHENOLIC	BAJ-TR.677-1973	This report reviews the nature and sources of chrysotile asbestos fibre and describes evaluations made of a number of differing grades of Canadian 'ex the mine' fibres from the Carey (E.Quebec), Cassiar (Brit. Columbia) and Clinton (Yukon) mines. The tests made indicated that a shorter than the 5D-1 grade of fibre used hitherto could be considered because
CONTD.		it not only gave comparable strength mouldings but gave a moulding which could be machined to a higher standard of finish.
		With this background work was commenced to explore the feasibility of producing moulding compounds having a greatly reduced spelk and/or spiccules content, using wet greding techniques that were being developed at Waltham Abbey. In this latter co-operation it was found that fibres which had been highly opened at the mine were less suitable than the normal grades; it also showed that length grading by wet centrifuging was needed in addition to an initial grading by diameter using wet hydrocyclones.
	RA 7-TP 230 1024	
	000-10.0730-7374	Existing resinated asbestos mouldings did not have sufficient elongation at break to withstand the conditions being encountered in a new project motor so a development of a material having a higher strain capability was commenced and is described in this report. Two main approaches were made:-
		(i) Surface treating the fibre to increase its bond to the matrix regin
		(ii) Modifying the resin matrix by adding liquid or powdered rubber or by replacing it with a conventional rubber gum stock.
		Because of earlier unsuccessful work elsewhere on anionic coupling agents for asbestos, approach No.l was confined to cationic agents and examined a standard and two experimental materials all produced by Dow Corning; they were Z6O31, XZ.8-5069 and XC-8-5456. None of these materials gave a moulding having a significantly increased elongation at break. Although oxyazolines were also being considered, evaluation samples could not be obtained.
		Two formulations were developed by the second approach. One had elongation at break of around 1.7% (almost twice that for Durestos RA.51) and the other about 15%. Both had good resistance to the ablative conditions of the ASTM oxy- acetylene torch test and either was superior to Durestos RA.51 in some aspects of this test. Both materials were formulated from Carey 5D-1 asbestos fibres which had been wet graded by PERME at Waltham Abbey and contained acrylonitrile polymers to modify the phenolic resin.
0 * 1 * *		A further formulation (based on a conventional acrylonitrile stock having a comparable nitrile content to the liquid and solid acrylonitrile used in the other two formulae) had about 30% elongation at break when produced to have a 37% rubber content; it was inferior to the other two in the ASTM torch test.
	8AJ-TR.777-1975	Describes further evaluation of wet graded fibres. Although graded Cassiar AK, Clinton CY, CP and CT fibres were examined the main part of the investigations were to compare three large Banwell production sized batches of Carey 50-1 passing 30 mesh fraction with three similar sized batches of moulding material produced from ex-the mine 50-1 fibre and also with Durestos RA.51. This latter comparison was made by mechanical and ASTM torch tests. The tensile strengths obtained for the wet graded fibre batches were similar to those for the ex-the-mine fibres, but were less scattered, whereas the results for the Durestos RA.51 covered a wide range; the highest values in the series were amongst those obtained for Durestos RA.51 in the 'G' direction of the original moulding but mean results in the A direction did not differ
		A more consistent behaviour of processed fibre was noted also in the ASTM torch tests which resulted in this material being in the upper part of the scatter bands for Durestos RA.51 for the various parameters determined by this test.
		Some work was carried out to find out whether there might be any advantage in using a more closely controlled fraction of graded fibre. Moulding compounds were prepared to compare 'passing 30 mesh' fractions of Carey 4T-1 and 5D-1, Cassiar AX fibre with the 'passing 100 retained on 30 mesh' fraction of these fibres; a latter type fraction of Clinton CY was exemined also. The use of the narrower out fraction of the 4T-1 and 5D-1 fibres gave higher strength mouldings but the difference was small for the AK fibres.
·		
	е — <u>с</u> н	

BAJ-TR.847-1978

contd..... from sheet 3

APPENDIX 3 Sheet 4

RESTRICTED - U.K. EYES (8)

Material	Report Reference	Synopsis						
SILICA ASBESTOS PHENOLIC	8AJ-TR.534-1970 end Pert 1 8AJ-TR.650-1972	The earlier report describes an initial development of this type of moulding compound and the second extends this work to include other ratios of the two fibres. The size of batch produced was scaled up in this latter investigation and the batches produced were raised from 0.3 to 9 kg by change of mixer without problem; although the larger bulks were found, generally, to mould to a higher strength in the A direction to that found when using the smaller mixer. The range of fibre mixes covered by the complete investigation was:-						
		% silice in mix N11 5.0 9.9 14.9 19.2 24.8 34.6 49.6 % asbestos 5D-1 in the mix 49.6 44.6 39.7 24.7 29.9 74.9 35.9						
		Strength in the A direction of the rectangular test board (the longitudinal) tended to rise with increase in silica content whilst in the B direction fell, and was thought to indicate a reduced orientation of fibre when moulding the higher silica contant mixes; there was also some indication that the alongation at break of such mixes had also						
		Tailpipe linings made from a number of mixes were used in static motor firings of the Westcott 203 mm SC test motor. These tests showed that the amount of insulation remaining after firing did not differ appreciably from comparable figures obtained for the usual resinated asbestos material. Appreciable swelling of the lining was noted, however, for the asbestos/silica mixes whenever the silica/sabestos fibre ratio exceeded unity. At the time, it was concluded that the much higher cost of the silica fibre did not justify further investigations.						
SILICA GLASS	BAJ-TR.768-1975	Combinations of silica and glass fibre were examined against their use as a possible replacement of the more expensive						
PHENOLIC		Mouldings produced from hybrids had mean tensile strengths which were generally intermediate between those for comparable all glass or all silica formulations. Using conventional, contoured, tensile test specimens the elongation at failure of hybrids did not differ appreciably from that of all glass or all silica materials but a newly introduced test showed that they might, nevertheless, have possible edvantage. In this test a tapered mandral						
		Wes forced up the bore of a small cylindrical moulding of the material being examined until failure occurred. Failing load - X diametric strain diagrams produced by this test showed that although an all silica moulding had an enhanced load bearing and strain capability, it failed catastrophically as soon as a crack had initiated. On the other hand a fibrous filler, such as asbestos, allowed cracking to propagate whilst still retaining some load bearing capacity in the composite so it was argued that the addition of a glass fibre as an additional filler in an all silica formulation might have an advantage not shown by the conventional determination of each other the still which is a still a sti						
	• • •	A silica/glass formulation was therefore included in the list of recommended materials for static motor firing tests.						
SILICON NITRIDE	8AJ-TR.600-1971	A 'state of the art' review report on this material against its possible use as insulation within a liquid motor; it also outlined proposals for a development programme for this application.						
ELASTOMERIC COMPOUNDS	BAJ-TR.682-1977	Twelve different polymers each containing the same level of filler were examined by determining the weight loss and the thickness change of ministure blast pipes exposed to a plasma arc internally. All conclusions must therefore relate to this test. The filler used was an equipart mix of chrysotile asbestos and silica powder with 5D-1 and 7KS-1 grades of asbestos being used as alternatives. The rubbers examined in this way included butyl, chlorobutyl, nitrile, EPDM, neoprene, Hypalon, epichlorobydrin, fluorosilicone, 503, polyurethane and silicane, and all were examined with a solution.						
		a better criterion. Supprisingly all the helogeneted elestomere examined - and especially Hypelon - were less satisfactory than the others and butyl was considered to be the best material examined - and especially Hypelon - were less satisfactory had a small advantage of low density.						
		Stronger chars formed when 50-1 asbestos fibres replaced 7MS-1 powders in the formulations but the variations made in curing systems and degree of cure did not seem to affect the resistance of the compound to plasma arc conditions. The lower nitrile content polymer of the two nitriles examined had the better rating.						
	a a serence and	Maximum resistance to the test was associated with a high filler content and it was found that the upper limit was below 50:50 pphr by weight of the esbestos/silice fillers and that the 40:60 mix was probably the best all round companies						

contd..... Sheet 5

843-TR.847-1978

contd..... from sheet 4

APPENDIX 3 Sheet 5

RESTRICTED - U.K.

EYES (B)

:

Material	Report Reference	Synopsis
CARBON WOOL/ GRAPHITE/ PHENOLIC	BAJ-TR.525-1970	Describes the evaluation of a carbon wool/graphite powder/phenolic resin moulding compound from an earlier ad hoc produced mix which had shown promise in static motor firing tests at PERME Westcott despite its extremely porous nature.
PM173.		During this development the resin was changed from the syrup used originally to a powdered novolek to make preconditioning at 80°C before moulding unnoessary and the resin content varied. Mixing in a sigma blade mixer was introduced and mixing time in this mixer was investigated. During this part of the investigation'it was shown thet there was a critical upper limit to the amount of material that could be mixed efficiently at one time; it was much less than might have been expected from earlier work with asbestos fibres.
		Formulation changes studied included a partial or a complete removal of the graphite constituent as well as introducing various choppings of continuous carbon fibre as a replacement for the carbon wool incredient (hyfil fibre was year).
50 1		Assessments of formulation changes was by a determination of mechanical properties of moulded test boards, simple compression moulding trials and finally static firing trials of end plate and blast pipe linings in the 203 mm test motor at Westcott using RD.2427 aluminised solid charge propellants.
		Manganese dioxide was introduced as an additional filler in the developed formulation and did not change the mechanical properties of the moulding significantly; firing tests were not made of this mix.
	8AJ-TR.618-1972	As a continuation of the work at Banwell, mixing trials of a selected mix - Banwell Ref.PM.124 - were carried out and established that a Lodige Morton mixer could be used instead of a sigma blade mixer if larger batches were needed. Twelve entry cones for Lapwing nozzles were produced from a large batch mix by compression moulding as a shop exercise into the feasibility of using a moulding to replace the usual entry cone which is machined from a graphic preform. An X-ray examination of these mouldings showed lack of homogeneity within the moulded blank before machining so three components were selected on a basis of 'best to worst' scale for static motor firings.
		It was unfortunate that these trials were not made, as it had been concluded that a moulding might be an economically attractive alternative if it could be established that it performed satisfactorily in a rocket motor firing.

contd..... on sheet S

BAJ-TR-847-1978

RESTRICTED - U.K. EYES (B)

External Distribution	For the attention of	Copy No.
Procurement Executive, Ministry of Defence, Propellant, Explosives & Rocket Motors Establishment, Westcott, Aylesbury, Bucks, HP18 ONZ.	Supt.Chemistry & Applied Physics Div. Supt.Solid Propellant Motors Supt.Liquid Propellant Division Head of Materials & Testing T.I.B. Head of Drawing Office PS (Dev)/RME Management Services Group.	1 2 3 4 & 5 (2) 6 7 8 9

10 8 11

24

25

Defence Research Information Centre, (2 copies) Station Square House, St. Mary Cray, Orpington, Kent, BR5 3RE.

> Management Services Mr. N.J. Parratt

Procurement Executive, Ministry of Defence, P.E.R.M.E., Waltham Abbey, Essex, EN9. 18P.

DOCUMENT CONTROL SHEET

·

	A	
sheet should contain	only unclassified info	rmation. If it is
fied information, the	box concerned must be	marked to indicat
(R), (C) or (S)).	,	
2. Originator's Reference	3. Agency Reference	4. Report Securit, Classification
BAJ-TR.847-1978	•	Restricted - U.K. Eyes (B)
6. Originator (Corpo Bristol Aerojet L Weston-super-Mare	rate Author) Name and td., Banwell, , Avon, BS24 8PD.	Location
6a. Sponsoring Agenc Propellant, Expl Procurement Exec Ministry of Defe	y (Contract Authority) osives and Rocket Moto utive,	Name and Location rs -Westcott,
-1	1.1 bit 15,9	
on for use within Roc	ket Motors - A Review	
guage (in the case of	translations)	
nference papers). Ti	tle. place and date of	conference.
Friend Prieton (Construction)	they prove that have the	Contraction of the state of the
9a. Author 2.	9b. Authors 3, 4	10. Date pp. 1
9a. Author 2.	9b. Authors 3, 4	10. Date pp. 1 March, 1978
9a. Author 2.	9b. Authors 3, 4	10. Date pp. 1 March, 1978
9a. Author 2. 12. Period	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Reference
9a. Author 2. 12. Period	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Reference
9a. Author 2.	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Referen
9a. Author 2. 12. Period	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Referent
9a. Author 2. 12. Period nt	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Referent
9a. Author 2. 12. Period nt .0.D.	9b. Authors 3, 4	10. Date pp. 1 March, 1978 14. Other Referen
9a. Author 2. 12. Period nt .O.D.) ocket Motors, ablation bs, glass, ceramic, re	9b. Authors 3, 4 13. Project , linings, exit cones, efractories, rentry.	10. Date pp. 1 March, 1978 14. Other Referent
9a. Author 2. 12. Period nt .O.D.) ocket Motors, ablation os, glass, ceramic, re	9b. Authors 3, 4 13. Project	10. Date pp. 1 March, 1978 14. Other Reference
9a. Author 2. 12. Period nt .O.D. pocket Motors, ablation backet Motors, ablation pocket Motors, ceramic, re- erials that have been ve been considered for	9b. Authors 3, 4 13. Project 13. Project 13. Project 13. Project 13. Project 13. Project 13. Project 13. Project	10. Date pp. 1 March, 1978 14. Other Reference 14. And associated the past 20 years.
9a. Author 2. 12. Period 12. Period nt .O.D.) ocket Motors, ablation bs, glass, ceramic, re erials that have been ve been considered for presented is summaris	9b. Authors 3, 4 13. Project 13. Project 14. Proje	10. Date pp. 1 March, 1978 14. Other Reference 14. Action of the second
9a. Author 2. 12. Period nt .0.D. pocket Motors, ablation bocket Motors, ablation presented is summaries presented is summaries	9b. Authors 3, 4 13. Project 13. Project 14. Proj	10. Date pp. n March, 1978 14. Other Referent and associated the past 20 years.
9a. Author 2. 12. Period nt .O.D. Docket Motors, ablation bocket Motors, ablation presented is summaria	9b. Authors 3, 4 13. Project 13. Project , linings, exit cones, efractories, rentry. used on rocket motor a this purpose during t sed by 7 appendices.	10. Date pp. 1 March, 1978 14. Other Referent
	<pre>fied information, the fied information, the (R), (C) or (S)). 2. Originator's Reference BAJ-TR.847-1978 6. Originator (Corpo Bristol Aerojet L Weston-super-Mare 6a. Sponsoring Agenc Propellant, Expl Procurement Exec Ministry of Defe on for use within Roc guage (in the case of nference papers). Ti</pre>	<pre>sheet should contain only unclassified information, the box concerned must be (R), (C) or (S)). 2. Originator's Beference BAJ-TR.847-1978 6. Originator (Corporate Author) Name and Bristol Aerojet Ltd., Banwell, Weston-super-Mare, Avon, BS24 & & D. 6a. Sponsoring Agency (Contract Authority) Propellant, Explosives and Rocket Moto Procurement Executive, Ministry of Defence. on for use within Rocket Motors - A Review guage (in the case of translations) </pre>

G.Santos et al at NASA Lewis Res Center have explored the micro structure of mullites. NASA report N.73-33479.

RESTRICTED 1 U.K. EYES (в APPENDIX 7

(8)

APPENDIX 7 SHEET 2

ARTIFICIAL SILICATES

RESTRICTED - U.K. EYES (8)

RESTRICTED 1 п.к. EYES (B

RESTRICTED I. U.K. EYES (B

RESTRICTED-U.K. EYES (B)

RESTRICTED-U.K. EYF